

Energy Feasibility Study Report

for

Summer Gardens

1470 Summer Street, Halifax, NS

August 10th, 2023

Summer Gardens

August 10th, 2023

Summer Gardens 1470 Summer Street Halifax, NS

<u>Attention:</u> Condominium Board <u>Re:</u> Energy Feasibility Study Report

To Whom it May Concern,

PMC Energy Ltd. is pleased to provide you with the following Draft Energy Feasibility Study Report and associated proposal outlining the budgets, savings, and benefits of various Energy Efficiency and Conservation Measures at 1470 Summer Street, Halifax, NS.

The purpose of this study is to identify and analyze feasible energy efficiency and conservation opportunities resulting in energy savings for the facility. This report will serve two purposes; submission to Efficiency NS for review and approval of the estimated incentives through their various incentive programs, and as a guide for pursuing energy projects to improve building performance and reduce its carbon footprint.

The implementation of the Energy Conservation and Efficiency Measures (ECMs) outlined in this report is recommended. The comprehensive energy measures present the best opportunity to reduce the facility's operating costs and environmental footprint. It should be noted that the ECM costs shown in this report are a mix of budgetary and true costs for PMC to complete the work in a turn-key manner.

If you have any questions or require clarifications regarding any specific items addressed in this proposal, please feel free to contact me at your convenience.

Kind Regards,

Scott Hue, B.Eng., CEM Director of Energy scott@pmcenergy.ca

TABLE OF CONTENTS

1.	Bui	lding	g and Systems Description	3
	1.1	Gen	neral Description of Building	3
	1.2	Occ	upancy Summary	3
	1.3	Con	nmon Area Mechanical Equipment	4
	1.4	Ligh	iting Systems	5
	1.5	Buil	ding Automation System (BAS)	5
2.	Ene	ergy	Summary	6
	2.1	Hist	orical Utility Consumption and Demand – Baseline Data	6
	2.2	Calc	culated Annual Energy Distribution	6
	2.3	Reg	ression Analysis (RETScreen Expert)	7
3.	Ene	ergy	Efficiency and Conservation Measures	8
	3.1	ECM	/I-1: New Building Automation System, Repairs, Recommissioning	8
	3.1.	1	Existing Conditions	8
	3.1.	2	Proposed Measure	8
	3.1.	3	Measure Summary1	0
	3.2	ECN	/-1b: Heat Pump Retrofit for Penthouse DOAS1	.1
	3.2.	1	Existing Conditions1	.1
	3.2.	2	Proposed Measure1	1
	3.2.	3	Measure Summary1	1
	3.3	ECN	۸-1c: Solar Air Preheat for Penthouse DOAS1	.2
	3.3.	1	Existing Conditions1	.2
	3.3.	2	Proposed Measure1	2
	3.3.	3	Measure Summary1	3
	3.4	ECM	И-2: Parkade Level Heat Pump Retrofit with VRV1	3
	3.4.	1	Existing Conditions1	.3
	3.4.	2	Measure Summary1	3
	3.5	ECM	И-3 – DCW Booster Pump Replacement with High Efficiency Variable Speed System1	.4
	3.5.	1	Existing Conditions1	.4
	3.5.	2	Proposed Measure1	.4

Summer Gardens

3.5.	3	Measure Summary	.14
3.6	ECN	/-4: Replace DHW Tank with Heat Pumps (Qty.2)	. 15
3.6.	1	Existing Conditions	. 15
3.6.	2	Proposed Measure	.15
3.6.	3	Measure Summary	.16
3.7	ECN	И-5 – Rooftop Solar PV Option	.16
3.7.	1	Existing Conditions	. 16
3.7.	2	Proposed Measure	.16
3.7.	3	Measure Summary	.17
3.8	Add	litional Opportunities & Recommendations	.18
3.9	ECN	ለ Summary Table	.20

LIST OF TABLES AND FIGURES

Table 1 - Equipment List	4
Table 2 – Lighting Summary	5
Table 3 - Energy Calculation vs. Utility Baseline	6
Figure 1 - Calculated Annual Energy Distribution	6
Figure 2 - 2021/2022 Regression Analysis	7
Figure 3 - HDD Regression Analysis Graph – Baseline Predicted vs Actual Consumption (kWh's)	7
Figure 4 - Example Solar AIR Preheat System	12
Figure 5 - Example Winter Vestibule	18

LIST OF APPPENDICES

APPENDIX A – Utility Baseline

APPENDIX B – Energy Calculations

Summer Gardens

1. BUILDING AND SYSTEMS DESCRIPTION

1.1 General Description of Building

Summer Gardens located in the heart of downtown Halifax with lovely private property surrounding. There are 118 residential suites, through the focus of this report are the common area systems and areas within the facility. The facility includes an indoor year-round pool/hot tub/sauna and exercise facility, underground parking, guest parking, and common room with kitchen and outside patio for meetings and parties.

Summer Garden wished to explore opportunities associated with the building automation, space heating (and cooling), ventilation as well as pool heating and dehumidification to create a more efficient facility with reduced operating costs and improved system performance. A strong interest was also expressed in the implementation of demand management system, with the intent to be able to minimize peak loads in real time.

1.2 Occupancy Summary

PMC's audit scope included a detailed audit and review of all the common area systems. Most areas are currently being operated 24/7/365, though there is an opportunity to reduce run-hours or equipment capacities on targeted equipment, such the dedicated outdoor air system (DOAS) located in the penthouse.

Summer Gardens

1.3 Common Area Mechanical Equipment

The mechanical systems serving all the facilities common areas is summarized in the table below.

Тад	Description of Equipment	Qty	Area Served
SF-1 (New)	Supply Fan Grid	1	New SF Array
DH-1	Duct Heater 162kW	1	DOAS (SF-1 & EF-1)
EF-1	Exhaust Fan (DOAS)	1	Bathrooms, Kitchen Range, Dryers
EF-2	Dryer Exhaust Fan	1	Dryer Exhaust Riser 26/16
EF-3	Dryer Exhaust Fan	1	Dryer Exhaust Riser 34/12
RE-1	Roof Exhauster-1	1	Smoke Extractor from Supply Duct
RE-2	Roof Exhauster-2	1	General Penthouse Exhaust
RE-3	Roof Exhauster-3	1	Elevator Machine Room
HUH-1	Elec Unit Heater	1	General Penthouse Area
HUH-2	Elec Unit Heater	1	Elevator Room
CUH-1	Cabinet Unit Heater - Sidewall	1	Front Entrance Vestibule
CUH-2	Cabinet Unit Heater - Recessed Ceiling	2	Front Entrance Vestibule
CUH-3	Small Recessed Wall Heater in Mail Room	1	Ground Floor Mail Room
CUH-4	Electric Wall Heater	1	Rear Delivery Area
CUH-5	Cabinet Unit Heater - Sidewall	1	Rear Vestibule
EF-12	In-Line EF	1	Lounge and Mail Room
MS-1	Mini-Split	1	Common Area / Lobby
MS-2	Mini-Split	1	Lounge
CUH-6	Cabinet Unit Heater - Sidewall	1	Stairwell to Pool Area
Portable Dehum	Portable Dehum Running in Pool Area	2	Stairwell to Pool Area
CUH-7	Electric Wall Heater	2	Men's & Women's Washrooms by Pool
SH's	Sauna Heaters	3	Sauna
P-1	Pool Pump	1	Pool
PH-1	Pool Electric Heater	1	Pool
AH-1	Air Handling Unit (HHU-1-2)	1	Maintenance, Elevator Lobby, Men's and Ladies Change Rm, Gym
Duct Heater-1	Duct Heater for AH-1	1	Maintenance, Elevator Lobby, Men's and Ladies Change Rm, Gym
EF-5	Exhaust Fan	1	Storage Room, Gym, Washrooms, Sauna, Maintenance Room
AH-2	Air Handling Unit	1	Parking Level - Storage Lockers
AH-3	Air Handling Unit	1	Parking Level - Stairwell Pressurization
TF-1	Wall Mounted Transfer Fan	1	Air Pushed Into Pool Mech Room
TF-2	Wall Mounted Transfer Fan	1	Exhaust from DCM Pump Room (Pulled from Storage Room)
EF-4	Garbage Room EF	1	Garbage Room EF
EF-6,7	Parkade CO/NO EF's	3	Parking Level - Car Wash Area Parkade
EF's 8,9,10 EF- 11	Parkade CO/NO EF's Parkade Vault EF	1	Elec Vault
Dectron	Dry-O-Tron	1	Pool Room
Dectron Duct Heater	Duct Heater for Dectron	1	Pool Deck
Dehum	Small Dehum Unit in Storage Area	1	Storage Area - Parkade Level
BP-1	Booster Pumps	2	Booster Pumps
SP-1	Sump Pumps	?	Parkade
DHT	DHW Tank	1	Janitor Room
DHT	DHW Tank (Car Wash)	1	Wash Bay
SM	Snowmelt Boiler	1	Parkade Ramp
Burner	Burner	1	Ramp
P-2	Pump	1	Boiler
Jacuzzi	Jacuzzi	1	Pool Area
Jacuzzi	JUCU221	1	i ooraica

Table 1 - Equipment List

Summer Gardens

1.4 Lighting Systems

Most of the interior and exterior lights at Summer Gardens have already been upgraded to LED fixtures. There is a variety of lighting fixture styles and lamp types throughout the building. The timer for the exterior lights was missing its pins and lights appear to be operating 24/7 vs just at night when required. Occupancy sensors could be considered in some areas to provide additional energy savings.

A summary of lighting fixtures can be viewed below in Table 2.

Area / Room / Zone	Туре	Fixture Quantity	Watts per Fixture	Schedule (hr/year)	kWh/year
	Phillips 5W 4000K PL-S	164	5	8,736	7,164
Front + Rear Entrance Canopy	Phillips 13W PAR38 + E26 Socket	2	13	4,368	114
Operations Office	Philips 9.5T8/48-4000K IF + 2L Vol. Parabolic	1	21	1,560	33
Lobby + Elevator Tray Ceiling	Philips 9.5T8/48-4000K IF	60	21	8,736	11,007
Mail Box Alcove	Philips 9.5T8/48-4000K IF	2	21	8,736	367
Rear Service Hall	Philips 13T8/48-4000K HO IF + 1L Vol. Parabolic	2	16	8,736	280
Rear Exit Hallway	Philips 9.5T8/48-4000K IF + 1L Vol. Parabolic	3	13	8,736	341
Suite Door Bulkheads	Philips 9.5T8/48-4000K IF	122	13	8,736	13,855
Parkade Main Hallway	Philips 9.5T8/48-5000K IF + 2L Vol. Parabolic	6	21	8,736	1,101
Parkade Air Locks	Philips 9.5T8/48-5000K IF	4	21	8,736	734
Pool Tray Ceiling	Philips 9.5T8/48-5000K IF	20	21	8,736	3,669
Pool Change + Washrooms	Philips 9.5T8/48-5000K IF	8	21	8,736	1,468
Pool	LED-8008M57-MHBC (PWB1KNSC)	4	50	8,736	1,747
Exercise Room	Philips 9.5T8/48-5000K IF + 2L Vol. Parabolic	3	21	8,736	550
Parkade	Philips 9.5T8/48-5000K IF	58	21	8,736	10,640
Vehicle Wash Bay	Philips 15W Daylight A19 + E26 Socket	4	15	260	16
Recycle & Refuse Rooms	Philips 9.5T8/48-5000K IF	5	21	2,080	218
Utility + Rear Hallways	Philips 9.5T8/48-5000K IF	5	21	8,736	917
Parkade Service Stairwell	TuroLight DL-EC/4F/35W/50/120-347V/D	2	3	8,736	52
Tenant Storage Lockers	TuroLight DL-EC/4F/35W/50/120-347V/D	26	3	8,736	681
Stairwells + Alcove	TuroLight DL-EC/4F/35W/50/120-347V/D	45	3	8,736	1,179
Mechanical Stairwell	TuroLight DL-EC/4F/35W/50/120-347V/D	2	3	8,736	52
Mechanical Stairwell	TuroLight DL-EC/4F/35W/50/120-347V/D	1	3	8,736	26
Mechanical Penthouse Fixtures	Ecolux F34CW-RS-WM-ECO	16	34	780	424
Totals		565	405	8635	56,636

Table 2 – Lighting Summary

1.5 <u>Building Automation System (BAS)</u>

There is very little in place in terms of a building automation system aside from a Honeywell controller currently in place for the Penthouse DOAS system. Control and scheduling of most other equipment is achieved through local thermostats and in some cases timeclocks.

Summer Gardens

2. ENERGY SUMMARY

2.1 <u>Historical Utility Consumption and Demand – Baseline Data</u>

Summer Garden has two electrical meters serving the common area systems. Consumption and demand summary tables were assembled from historical data from 2020 and can be found in Appendix A. A summary of the annual consumption and demand is shown below for reference.

2020 Baseline Utility Data

· · · · · · · · · · · · · · · · · · ·	
Baseline Annual ELECTRICAL Consumption (kWh)	937,880
Baseline Annual ELECTRICAL Demand (kW)	2,324
Baseline TOTAL Energy Costs (Using Current Rates)	\$138,519.94
Baseline Energy Cost per Square Foot (Using Current Rates)	\$5.861

The peak electrical load of the facility occurs during the winter months. January of 2020 recorded a peak demand of 275.4 kW. The major contributors to the peak demand are the electric coils associated with the Penthouse DOAS unit and AH-1 in the Parkade Level.

2.2 Calculated Annual Energy Distribution

The annual energy consumption and annual demand for each system (or piece of equipment) was calculated (refer to Appendix B – Energy Calculations) and the summary table is shown below.

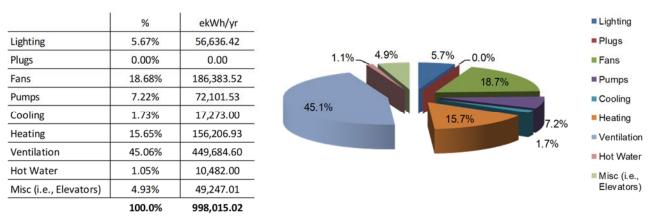


Figure 1 - Calculated Annual Energy Distribution

The calculated figures shown above were then compared to the established utility baseline data provided in Appendix A. As shown below the calculated values are within 10% of the actual utility baseline.

Table 3 - Energy Calculation vs. Utility Baseline

	Consumption (kWh)	(Demand kW)
Calculated Totals:	998,015.02	2,466.32
Proposed Baseline (2020):	937,880.00	2,323.90
Percent of Actual:	106.41%	106.13%

Summer Gardens

2.3 Regression Analysis (RETScreen Expert)

RETScreen Expert was used to analyze the baseline consumption data and to develop a model which allows us to accurately predict the future energy consumption of the building under the scenario where no upgrades are completed. The model uses hourly weather data which will ensure that future energy consumptions are automatically adjusted for weather conditions.

As seen in Figure 3 below there is a strong correlation between heating degree days (balance point 16°C) and consumption which returned an R² value of 0.9811. These balance points have been used in the calculations through this report.

Figure 3 - HDD Regression Analysis Graph – Baseline Predicted vs Actual Consumption (kWh's)

Given these results; PMC will use the developed RETScreen model and regression formulas to adjust future energy consumption as compared to the baseline.

Summer Gardens

3. ENERGY EFFICIENCY AND CONSERVATION MEASURES

PMC has completed a detailed review of the site conditions and equipment and has identified the following list of investigated Energy Efficiency and Conservation Measures (ECM's).

3.1 ECM-1: New Building Automation System, Repairs, Recommissioning

3.1.1 Existing Conditions

The existing Dedicated Outdoor Air Unit (DOAS) unit includes a passive heat recovery coil that is approximately 60% efficient. There is also a 162kW electric coil providing additional heat to the supply to ensure a neutral air temperature is delivered to the hallways. This creates a high electric demand when all stages are active. The DOAS unit's energy consumption is more than 30% of the total energy consumption associated with the two meters.

3.1.2 Proposed Measure

PMC completed a detailed inspection of the current DOAS unit and its associated components. We noted failed actuators and worn-out dampers as well as opportunities to refine the control and sequencing on the DOAS through the implementation of a modern control system. The scope below is comprehensive and provisions have been made to provide connection and control over all major energy consumers serving the common areas. Scope details include;

- Supply & install a BACnet IP Building Automation System (BAS), complete with controls wiring, connections and web-based graphical interface.
- Supply & install new controllers and sensors for equipment located in the <u>P1 Parkade Level</u> including pool equipment (i.e., pumps, heaters), Dectron DH unit, new VRV system proposed in ECM-2, AH-1, AH-2, EF-4, EF-5 and new domestic booster pump set proposed in ECM-3.
 - Supply and install new ultra-low leakage insulated dampers to replace the seized dampers associated with the Dectron unit.
 - Supply and install new SCRs on the Dectron duct heater as well as the pool heater.
- Supply & install new controllers and sensors for equipment located in the <u>Penthouse</u> including the DOAS system (SF-1, EF-1) as well as dryer exhaust fans, penthouse and elevator room exhaust fans and heaters.
 - Supply and install new ultra-low leakage insulated dampers to replace the intake damper in the elevator machine room and the intake dampers associated with RE-2.
 - Supply and install new isolation dampers for EF-2, and EF-3 to reduce stack effect when these fans are commanded OFF at night.
 - Supply and install new isolation dampers on the kitchen range duct risers to provide a means of reducing airflow of the DOAS at night.
 - Provide an air balance of the DOAS. Ensure air balance and recommissioning results in two balanced modes of operation including daytime off-peak operation.
- Supply & install new controllers and sensors for equipment located on the <u>Ground Floor</u> level including the cabinet heaters in the front and rear entrances.

Summer Gardens

- Supply and install Smart Power Meters for the metering of the two power feeds associated with the meter sets examined in the baseline. The power meters will integrate into the BAS server for monitoring and recording purposes. The overall intent is to measure and meter the demand (kW) at a building level and then utilize the controls system to reduce and minimize the overall peak levels by staging, controlling, measuring, and verifying the high energy consumers. A draft list of recommended loads and strategies include;
 - Shut-Off Dryer EF-2, EF-3
 - Night Mode on DOAS Reduced Airflow
 - Supply Air Temperature (SAT) Reset of DOAS
 - SAT and/or Setpoint (SP's) Resets of AH-1
 - Shut-Off AH-2
 - Disable RE-2 (General Penthouse Exhaust)
 - Disable HUH-1, HUH-2, CUH-1, CUH-2's, CHU-5
 - Reset SPs for New Gym and Pool Area Wall Mount Unit
 - Disable Pool Pump
 - Disable Pool Heater
 - Disable Dectron Pool Unit (or reset SAT's) and Associated Duct Heater
- Building Automation System (BAS) with Graphics, Alarm Reporting, and Remote Connection Capabilities, as well as Maintenance Manual, Labels, Panel Points Lists, and Training is included.
 - Internet connections will be required for building automation systems. PMC to work with owners for requirements and access.
 - PMC to provide remote alarms that will be sent to the building representative for the equipment controlled in this proposal.
- Please note that the car charging systems being contemplated do not appear to be capable of communicating with the proposed building automation system; however, further investigation is currently underway.
- As this is an existing building access to equipment can be difficult. Therefore, coring, firestopping, minimal drywall demolition, and painting may be required. PMC has not included these costs in the proposal. PMC to coordinate and work with owners for accommodations and gathering proposals for such work as required.

Summer Gardens

3.1.3 Measure Summary

The table below provides a summary of the energy efficiency and conservation measure highlighting the impact in tenant comfort, maintenance requirements, energy savings and financial indicators such as payback.

ECM-1: New Build	ding Automation	System, Repairs, Recommissioning			
Measure Description	complete new buildign automation system to proivide of jor enewrgy users in the Penthouse, Ground Floor and s, recomissioning and air balancing on the DOAS system	P1 Levels. To also			
Impact on System Performance	Occupant comfort will be improved slightly via new sequences and system performance.				
Impact on Operations and Maintenance Minor and incremental improvements to the existing systems and components so relatively little change to operations and maintenance tasks and associated costs.					
Energy and Financial Summary					
Total Project Cost:	\$159,660.00	Total Utility Bill Savings in Dollars:	\$14,825.80		
+ Eng. & Proj. Mgmt.:	\$0.00	- Additional Annual Costs:	\$0.00		
- Efficiency NS Incentive (Pending Approvals):	\$12,349.86	+ Additional Annual Savings (Maint):	\$0.00		
= Total Investment:	\$147,310.14	= Total Annual Savings Estimate:	\$14,825.80		
Annual Consumption Savings (kWh's):	123,498.62	Simple Payback:	9.9		
Annual Demand Savings (kW):	106.88	Useful Life (years):	20		
Annual Demand Savings (KW).	100.00		20		
	100.00	Return on Investment:			
Elect. Consumption Rate - 1st Tier (per kWh):	\$0.13817		\$0.10521		

Notes:

- Simple payback and ROI are based on fixed rates and do not account for NS Power's annual rate increases.

Summer Gardens

3.2 ECM-1b: Heat Pump Retrofit for Penthouse DOAS

3.2.1 Existing Conditions

The existing DOAS unit includes a passive heat recovery coil that is approximately 60% efficient. There is also a 162kW electric coil providing additional heat to the supply to ensure a neutral air temperature is delivered to the hallways. This creates a high electric demand when all stages are active and is responsible for a larger portion of building energy consumption. New heat technology and equipment options are becoming more widely available.

3.2.2 Proposed Measure

PMC explored several options during our investigations of this measure. The manufacturer AIR has proposed a retrofit kit that utilizes the refrigeration cycle to heat or cool the ventilation air by turning the exhaust air into a heat sink or source. In the winter exhaust air can provide COPs of greater than 5 because exhaust temperatures are much higher than outdoor ambient conditions.

3.2.3 Measure Summary

The table below provides a summary of the energy efficiency and conservation measure highlighting the impact in tenant comfort, maintenance requirements, energy savings and financial indicators such as payback.

ECM-1b: Heat Pump Ret	trofit of Penthouse	DOAS (or New Combined ERV, Heat Pump)				
Measure Description Heat Pump Retrofit of DOAS or New High Efficiency Unit						
Impact on System Performance Occupant comfort will be improved slightly via new sequences and system performance.						
Impact on Operations and Maintenance A heat pump system will require more maintenance compared to the passive heat recovery coils and electric heating coil currently in place.						
Energy and Financial Summary						
Total Project Cost:	\$625,000.00	Total Utility Bill Savings in Dollars:	\$30,207.62			
+ Eng. & Proj. Mgmt.:	\$0.00	- Additional Annual Costs:	\$0.00			
- Efficiency NS Incentive (Pending Approvals):	\$17,390.27	+ Additional Annual Savings (Maint):	-\$3,000.00			
= Total Investment:	\$607,609.73	= Total Annual Savings Estimate:	\$27,207.62			
Annual Consumption Savings (kWh's):	173,902.65	Simple Payback:	22.3			
Annual Demand Savings (kW):	694.70	Useful Life (years):	20			
Return on Investment: -0.52						
Elect. Consumption Rate - 1st Tier (per kWh):	\$0.13817	Elect. Consumption Rate - 2nd Tier (per kWh):	\$0.10521			
Electrical Demand Rate (max monthly kW):	\$10.554					

Please note that the cost presented in the table above is a **budget** only for the purpose of exploring the feasibility of this option.

Summer Gardens

3.3 ECM-1c: Solar Air Preheat for Penthouse DOAS

3.3.1 Existing Conditions

The existing DOAS unit includes a passive heat recovery coil that is approximately 60% efficient. There is also a 162kW electric coil providing additional heat to the supply to ensure a neutral air temperature is delivered to the hallways. This creates a high electric demand when all stages are active and is responsible for a large portion of building energy consumption.

3.3.2 Proposed Measure

PMC explored the option of trying to pre-heat the outdoor air using solar air heating panels. The picture below is a good representation of the concept.

Figure 4 - Example Solar AIR Preheat System

Summer Gardens

3.3.3 Measure Summary

The table below provides a summary of the energy efficiency and conservation measure highlighting the impact in tenant comfort, maintenance requirements, energy savings and financial indicators such as payback.

ECM	1-1c: Solar Air Prehe	eat for Penthouse DOAS				
Measure DescriptionInstall solar air heating system on roof using Matrix Air Delta modules. The system will provide 20,200 CFM of pre-heated fresh air to the penthouse AHU for distribution throughout the residential floors.						
Impact on System Performance	From the perspectiv	e of the occupants there will be no noticeable change.				
Impact on Operations and Maintenance Solar air heating system will require additional maintenance for inspections and periodic snow removal.						
Energy and Financial Summary						
Total Project Cost:	\$161,520.00	Total Utility Bill Savings in Dollars:	\$7,101.68			
+ Eng. & Proj. Mgmt.:	\$0.00	- Additional Annual Costs:	\$0.00			
- Efficiency NS Incentive (Pending Approvals):	\$6,750.00	+ Additional Annual Savings (Maint):	-\$250.00			
= Total Investment:	\$154,770.00	= Total Annual Savings Estimate:	\$6,851.68			
Annual Consumption Savings (kWh's):	67,500.00	Simple Payback:	22.6			
Annual Demand Savings (kW):	0.00	Useful Life (years):	25			
		Return on Investment:	0.43%			
Elect. Consumption Rate - 1st Tier (per kWh):	\$0.13817	Elect. Consumption Rate - 2nd Tier (per kWh):	\$0.10521			
Electrical Demand Rate (max monthly kW):	\$10.554					

3.4 ECM-2: Parkade Level Heat Pump Retrofit with VRV

3.4.1 Existing Conditions

There is considerable ventilation load associated with AH-1 in the basement providing temperature ventilation air to the elevator lobby, the hallways, the pool change rooms and the maintenance shop. PMC therefore explored opportunities to implement heat recovery between AH-1 and EF-5. We then examined how this new heat recovery system could be expanded to provide dehumidification to the storage areas via replacement of AH-2, replacement of the cabinet unit heater in the pool room stairwell as well as the addition of new dedicated cassette style unit in the gymnasium area.

3.4.2 Measure Summary

The table below provides a summary of the energy efficiency and conservation measure highlighting the impact in tenant comfort, maintenance requirements, energy savings and financial indicators such as payback.

Summer Gardens

ECM-2	2: Parkade Level Hea	t Pump Retrofit with VRV			
Measure Description This ECM explored the opportunity to replace the aging make-up air and air handling equipment serving the P1 Parkade Level with heat pump, heat recovery technology. This ECM targets replacing AH-1 and EF-5 with a new ERV and also a post-heat VRV ducted air handling unit. ECM include replacement of AH-2 top proved dehumidification, a new cassettes style split for the gym, and a new wall-mount heat pump for the pool stairwell.					
Impact on Occupant Comfort Occupant comfort will be improved via new sequences and system performance. The addit of cooling capacity should reduce or eliminate the need for portable dehumidification units will also provide improved comfort to the gymnasium.					
Impact on Operations and Maintenance A heat pump system will require more maintenance compared to the electric heating coils and heaters currently in place.					
	Energy and Fina	ancial Summary			
Total Installation Estimate: + Eng. & Proj. Mgmt.: - Efficiency NS Incentive (Pending Approvals): = Total Investment:	\$220,840.00 \$0.00 \$12,349.86 \$208,490.14	Total Utility Bill Savings in Dollars: - Additional Annual Costs: + Additional Annual Savings (Maint): = Total Annual Savings Estimate:	\$14,825.80 \$0.00 \$0.00 \$14,825.80		
Annual Consumption Savings (kWh's): Annual Demand Savings (kW): Annual Consumption Savings (GJ's):	123,498.62 106.88 0.00	Simple Payback: Useful Life (years): Return on Investment:	14.1 20 2.11%		
Elect. Consumption Rate - 1st Tier (per kWh): Electrical Demand Rate (max monthly kW):	\$0.13817 \$10.554	Elect. Consumption Rate - 2nd Tier (per kWh):	\$0.10521		

NOTE: A follow-up site visit will be required to verify some installation details of the above ECM. This includes items such as condensing unit locations, electrical connections, etc.

3.5 ECM-3 – DCW Booster Pump Replacement with High Efficiency Variable Speed System

3.5.1 Existing Conditions

The existing domestic booster pump system appears to be original to the building and is comprised of two 10-hp pumps (lead/lag). It is a constant speed pumping system that does not provide any automatic variable capacity control and instead relies on pressure reduction valves at the outlet of the pump.

3.5.2 Proposed Measure

Supply and install a new high efficiency variable speed booster system to provide constant pressure at variable flow rates in an efficient manner.

3.5.3 Measure Summary

The table below provides a summary of the energy efficiency and conservation measure highlighting the impact in tenant comfort, maintenance requirements, energy savings and financial indicators such as payback.

Summer Gardens

ECM-3: DCW Booster P	ump Replacement	with High Efficiency Variable Speed System					
Measure Description	Replace the existing efficiency booster pu	fixed speed domestic booster pump system with a new ump system.	variable flow high				
Impact on Occupant Comfort	There may be some adjustment period as the system water pressures are recommissioned.						
Impact on Operations and Maintenance This is a new domestic pumping system which should operate reliably for many years compared to the aging system which appeared to experience failures based on audit observations.							
	Energy and Fin	ancial Summary					
Total Installation Estimate: + Eng. & Proj. Mgmt.: - Efficiency NS Incentive (Pending Approvals):	\$68,880.00 \$0.00 \$5,500.00	Total Utility Bill Savings in Dollars: - Additional Annual Costs: + Additional Annual Savings (Maint):	\$5,579.16 \$0.00 \$0.00				
= Total Investment:	\$63,380.00	= Total Annual Savings Estimate:	\$5,579.16				
Annual Consumption Savings (kWh's): Annual Demand Savings (kW): Annual Consumption Savings (GJ's):	52,585.87 2.72 -	Simple Payback: Useful Life (years): Return on Investment:	11.4 20 3.80%				
Elect. Consumption Rate - 1st Tier (per kWh): \$0.13817 Elect. Consumption Rate - 2nd Tier (per kWh): \$0.10521 Electrical Demand Rate (max monthly kW): \$10.554 \$10.554							

3.6 ECM-4: Replace DHW Tank with Heat Pumps (Qty.2)

3.6.1 Existing Conditions

The audit identified three (3) domestic hot water (DHW) tanks in the common areas on the ground floor and on the P1 level serving independent loads. There is a 61-gallon tank in the P-1 janitors' closet/storage room, a 45-gallon tank in the car wash area, and a tank of unknown size in the laundry room located behind the security office.

3.6.2 Proposed Measure

PMC proposes the replacement of two of the three existing DHW tanks serving the P-1 janitors' closet/storage room and the car wash area with heat pump water heaters (HPWH). Switching to HPWH's will yield energy savings through more efficient DHW generation. Based on manufacturer recommendations and PMC's experience with heat pump water heaters, this ECM is not suggested in the laundry room due to conflicting space limitations and ventilation requirements. It may be beneficial for Summer Gardens to implement HPWH's after the useful life of the current DHW tanks, rather than pursuing an immediate replacement.

Summer Gardens

3.6.3 Measure Summary

The table below provides a summary of the energy efficiency and conservation measure highlighting the impact in tenant comfort, maintenance requirements, energy savings and financial indicators such as payback. It is difficult to determine the current domestic hot water usage of the car wash area and janitors' closet, due to unconventional applications. The following summary demonstrates the expected energy savings by transitioning an electric DHW tank serving **standard household loads** to a heat pump water heater. Energy savings will vary based on actual DHW consumption.

ECM-4 -	Replace DHW Heat	ers with Heat Pumps - Qty.2				
Measure Description	Replace a standard electric DHW tank at Summer Gardens with a heat pump water heater. Replacement opportunities include the DHW tanks serving the car wash area and P-1 janitors closet/ storage area.					
Impact on Occupant Comfort	No change to occupa	ant comfort.				
Impact on Operations and Maintenance The heat pump water heater will require a different maintenance procedure than the existing electric DHW tank.						
	Energy and Fina	ancial Summary				
Total Installation Estimate:	\$11,360.00	Total Utility Bill Savings in Dollars:	\$542.88			
+ Eng. & Proj. Mgmt.:	\$0.00	- Additional Annual Costs:	\$0.00			
- Efficiency NS Incentive (Pending Approvals):	\$600.00	+ Additional Annual Savings (Maint):	\$0.00			
= Total Investment:	\$10,760.00	= Total Annual Savings Estimate:	\$542.88			
Annual Consumption Savings (kWh's):	5,160.00	Simple Payback:	19.8			
Annual Demand Savings (kW):	0.00	Useful Life (years):	15			
		Return on Investment:	-1.62%			
Elect. Consumption Rate - 1st Tier (per kWh): Electrical Demand Rate (max monthly kW):	\$0.13817 \$10.554	Elect. Consumption Rate - 2nd Tier (per kWh):	\$0.10521			

NOTE: Efficiency Nova Scotia offers a Commercial Water Heating Rebate which can allow for up to \$800 of each HPWH purchase to be recovered. Efficiency Nova Scotia must be consulted for confirmation of this incentive. For the purposes of this measure summary, a rebate of \$600 was applied assuming a 50-gallon HPWH is installed.

3.7 ECM-5 – Rooftop Solar PV Option

3.7.1 Existing Conditions

Summer Gardens has a roof area of approximately 6,650 ft² (after deducting the penthouse area) and combined with the fact that it is a tall building that is not shaded from neighbouring buildings it makes it an opportune location for rooftop solar photovoltaics. This measure analyses the feasibility of rooftop solar and provides high level budgets, and for all intents and purposes it is assumed that 2,800 ft² of this roof area can be used for solar.

3.7.2 Proposed Measure

Install a solar PV system on the roof of 1470 Summer St. Scope includes:

Summer Gardens

- Supply and install a 47-kW capacity solar PV system.
- Low profile ballasted racking system certified for flat roof.
- Micro inverter and accessories wired to electrical panel and integrated with NS Power netmetering.
- Combiner box and disconnect.
- Crane for lifting materials to roof area.
- Startup and commissioning.

3.7.3 Measure Summary

The table below provides a summary of the energy efficiency and conservation measure highlighting the impact in tenant comfort, maintenance requirements, energy savings and financial indicators such as payback.

	ECM-5: Rooftop	Solar PV Option					
Measure Description	Install solar PV system on roof. Estimated system capacity is 47kW. System will be net-metered with NS Power so that at any time where excess energy is being produced and not used in the building it will be sent exchanged to the grid in the form of credits.						
Impact on Occupant Comfort	No change to occupa	ant comfort.					
Impact on Operations and Maintenance Solar PV will require additional maintenance for inspections and periodic snow removal.							
	Energy and Fina	ancial Summary					
Total Installation Estimate: + Eng. & Proj. Mgmt.: - Efficiency NS Incentive (Pending Approvals): = Total Investment:	\$140,000.00 \$0.00 \$0.00 \$140,000.00	Total Utility Bill Savings in Dollars: - Additional Annual Costs: + Additional Annual Savings (Maint): = Total Annual Savings Estimate:	\$8,491.46 \$0.00 \$0.00 \$8,491.46				
Annual Consumption Savings (kWh's): Annual Demand Savings (kW):	50,866.67 183.12	Simple Payback: Useful Life (years): Return on Investment:	16.5 30 2.73%				
Elect. Consumption Rate - 1st Tier (per kWh): Electrical Demand Rate (max monthly kW):	\$0.13817 \$10.554	Elect. Consumption Rate - 2nd Tier (per kWh):	\$0.10521				

NOTE:

- Simple payback and ROI are based on fixed rates and does not account for NS Power annual rate increases.
- Accelerated CCA rate incentives are also available, however, not included in the above analysis.

Summer Gardens

3.8 Additional Opportunities & Recommendations

In addition to the formal ECMs identified and summarized above, PMC also completed a high-level review of other potential opportunities and capital replacement recommendations for consideration.

Winter Vestibule

The main entrance to Summer Gardens uses motion-activated double sliding doors and a single manual door for access into the building. These doors open to a small vestibule placed alongside the security office, served by three unit heaters. While on site, it was observed that many residents will stop in the vestibule to chat with the Commissionaire, which frequently causes the automatic sliding doors to open unnecessarily. In the winter, gusts of cold air enter the building each time the main doors are opened increasing the heating load required to maintain comfortable conditions in the vestibule.

PMC examined the concept of a seasonal vestibule outside of the main entrance to Summer Gardens during the winter months, to prevent these gusts of cold air from entering the building. The temporary structure will serve as a barrier against the strong head winds faced by the main entrance. The vestibule will be designed with both cosmetics and accessibility in mind (see examples below), and can be installed/removed by Summer Gardens staff.

Figure 5 - Example Winter Vestibule

As an additional measure, the motion sensors operating the sliding double doors can be replaced with interior and exterior push buttons. This will prevent the doors from opening unnecessarily from accidental motion sensor trips, therefore reducing the amount of cold air entering the space.

Replace Dectron Unit

At the time of the inspection the Dectron unit appeared to be functional, and reports indicated that it may have been recently repaired.

Summer Gardens

The unit is quite old and has exceeded it ASHRAE recommended lifespan. Dectron offers many variations within their product line and there are other options that are more efficient that the current unit. We reached out the Dectron representative and they are providing several efficiency options for review (still pending at time of this report).

In the short term, PMC recommends implementation of ECM-1 which will provide connection and control over the existing Dectron unit, its duct heater, and the pool heater. ECM-1 also included replacement dampers and new control sequences to maximize the opportunities for cooling or low-cost dehumidification using outdoor air when conditions were favourable. With the new BAS in place additional trend data will allow for more accurate assessment of the current units, functionality and efficiency so that its replacement can be more carefully considered.

Life Safety Systems

If not already completed PMC recommends a thorough inspection of the life safety systems observed during our audit. This includes the fire alarming and smoke exhaust system associated with the Penthouse DOAS system as well as the CO/NO system serving the parkade. The dampers associated with the CO/NO system should also be scheduled for replacement. **UPDATE:** The board confirmed that these system have recently been inspected and minor repairs were underway.

Summer Gardens

3.9 ECM Summary Table

ECM #	Description of Item	Total Annual kWh Savings	Total Annual kW Savings	Total Annual (\$) Utility Savings	Additional Costs or Savings (\$)	Construction & Engineering Cost (\$)	Total Estimated Incentive (\$)	Net Project Investment (\$)	Life Expectancy (years)	Simple Payback (years)	Return on Investment
1	New Building Automation System (BAS), Repairs, Recommissioning	123,498.62	106.88	\$14,825.80	\$0.00	\$159,660.00	\$12,349.86	\$147,310.14	20	9.94	5.06%
1b	Heat Pump Retrofit for Penthouse DOAS	173,902.65	694.70	\$30,207.62	-\$3,000.00	\$625,000.00	\$17,390.27	\$607,609.73	20	22.33	-0.52%
1c	Solar Air Preheat for Penthouse DOAS	67,500.00	0.00	\$7,101.68	-\$250.00	\$161,520.00	\$6,750.00	\$154,770.00	25	22.59	0.43%
2	Parkade Level Heat Pump Retrofit with VRV	123,498.62	106.88	\$14,825.80	\$0.00	\$220,840.00	\$12,349.86	\$208,490.14	20	14.06	2.11%
3	DCW Booster Pump Replacement with High Efficiency Variable Speed System	52,585.87	2.72	\$5,579.16	\$0.00	\$68,880.00	\$5,500.00	\$63,380.00	20	11.36	3.80%
4	Replace DHW Heaters with Heat Pumps - Qty.2	5,160.00	0.00	\$542.88	\$0.00	\$11,360.00	\$600.00	\$10,760.00	15	19.82	-1.62%
5	Rooftop Solar PV Option	50,866.67	183.12	\$8,491.46	\$0.00	\$140,000.00	\$0.00	\$140,000.00	30	16.49	2.73%
6 - HM	Winter Vestibule Enclosure (see pictures)	Hard to Calculate	N/A	Hard to Calculate	\$0.00	\$10,000.00	N/A	\$10,000.00	Unknown	Unknown	Unknown
CAP REC	Pool - Replace Dectron Unit	TBD	TBD	TBD	TBD	TBD	TBD	TBD	20	TBD	TBD
CAP REC	Replace CO/NO System, Replace OA Dampers, Inspect Fans	N/A	N/A	N/A	N/A	TBD	N/A	TBD	20	N/A	N/A

Please Note: Figures shown in red in the table above are budget costs only. These items require further investigation and revisions should the ECM be pursued.

Summer Gardens

APPENDIX A – Utility Baseline

Summer Gardens

Acct No.:

0465129-5

2020 ELECTRICAL CONSUMPTION & DEMAND - 1470 Summer St

METER NUMBER: 1128897

	6-Jan-2020	6-Feb-2020	6-Mar-2020	9-Apr-2020	11-May-2020	5-Jun-2020	8-Jul-2020	6-Aug-2020	4-Sep-2020	7-Oct-2020	9-Nov-2020	7-Dec-2020	
Period	6-Feb-2020	6-Mar-2020	9-Apr-2020	11-May-2020	5-Jun-2020	8-Jul-2020	6-Aug-2020	4-Sep-2020	7-Oct-2020	9-Nov-2020	7-Dec-2020	7-Jan-2021	
2020	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	TOTAL
Days in billing period	31	29	34	32	25	33	29	29	33	33	28	31	367
Consumption (kWh)	18,880	19,440	20,640	15,440	6,480	8,240	6,960	6,640	7,680	9,120	8,640	13,040	141,200
Demand (kW)	47.2	44.5	38.0	34.2	35.3	13.5	13.9	12.8	16.6	23.4	25.6	34.8	340
Energy Cost (\$-HST)	\$1,158.85	\$1,092.56	\$932.98	\$839.68	\$795.48	\$331.45	\$341.27	\$314.27	\$407.56	\$574.52	\$628.53	\$1,409.35	\$8,826.50
Energy Cost (\$-HST)	\$849.32	\$948.28	\$1,173.21	\$773.74		\$498.43	\$376.07	\$367.08	\$392.27	\$399.47	\$316.69		\$6,094.56
Demand Cost (\$-HST)	\$495.46	\$467.12	\$398.89	\$359.00	\$370.54	\$141.71	\$145.91	\$134.36	\$174.25	\$245.63	\$268.72	\$365.30	\$3,566.89
Total Cost (\$-HST)	\$2,503.63	\$2,507.96	\$2,505.08	\$1,972.42	\$1,166.02	\$971.59	\$863.25	\$815.71	\$974.08	\$1,219.62	\$1,213.94	\$1,774.65	\$18,487.95
Average Cost per kWh	\$0.11	\$0.10	\$0.10	\$0.10	\$0.12	\$0.10	\$0.10	\$0.10	\$0.10	\$0.11	\$0.11	\$0.11	0.106288304
Average Cost per kW	\$10.50	\$10.50	\$10.50	\$10.50	\$10.50	\$10.50	\$10.50	\$10.50	\$10.50	\$10.50	\$10.50	\$10.50	10.4970175

METER NUMBER: 1128898

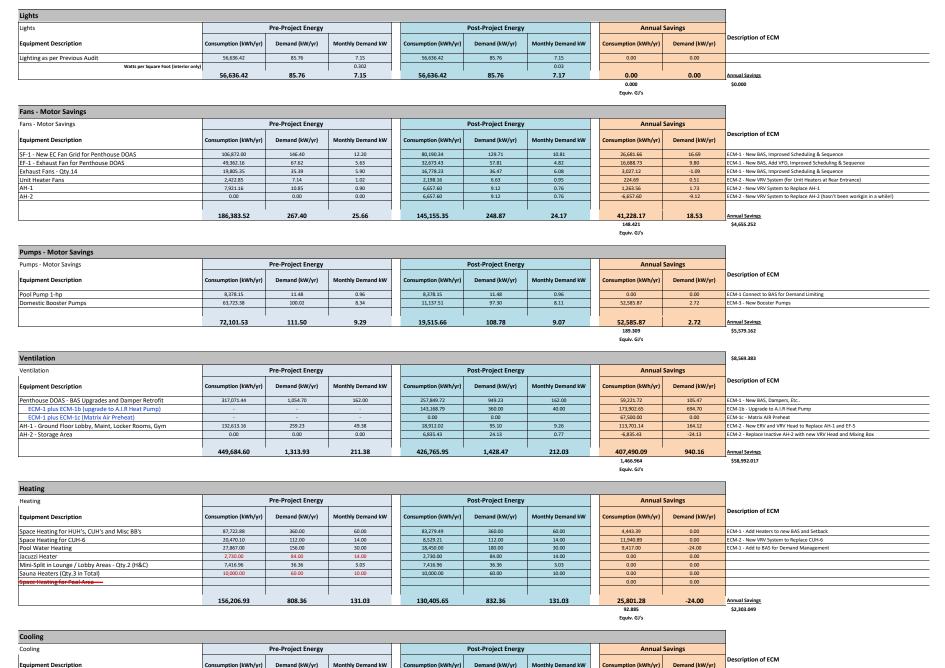
Acct No.: 0115159-6

	6-Jan-2020	6-Feb-2020	6-Mar-2020	9-Apr-2020	11-May-2020	5-Jun-2020	8-Jul-2020	6-Aug-2020	4-Sep-2020	7-Oct-2020	9-Nov-2020	7-Dec-2020	
Period	6-Feb-2020	6-Mar-2020	9-Apr-2020	11-May-2020	5-Jun-2020	8-Jul-2020	6-Aug-2020	4-Sep-2020	7-Oct-2020	9-Nov-2020	7-Dec-2020	7-Jan-2021	
2020	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	TOTAL
Days in billing period	31	29	34	32	25	33	29	29	33	33	28	31	367
Consumption (kWh)	113,940	100,440	108,000	82,800	38,160	39,420	24,480	23,400	33,480	67,680	71,280	93,600	796,680
Demand (kW)	228.2	221.9	207.0	176.0	199.8	110.3	86.9	71.1	92.3	187.0	201.8	201.8	1,984
Energy Cost (\$-HST)	\$5,602.77	\$5,448.09	\$5,082.26	\$4,321.15	\$4,684.52	\$2,708.09	\$2,133.57	\$1,745.65	\$2,266.15	\$4,591.22	\$4,954.59	\$9,801.45	\$53,339.51
Energy Cost (\$-HST)	\$6,144.95	\$5,043.72	\$5,992.00	\$4,282.57		\$1,561.88	\$638.79	\$825.92	\$1,351.35	\$2,724.29	\$2,781.87		\$31,347.34
Demand Cost (\$-HST)	\$2,395.42	\$2,329.28	\$2,172.88	\$1,847.47	\$2,097.30	\$1,157.82	\$912.19	\$746.34	\$968.87	\$1,962.94	\$2,118.29	\$2,118.29	\$20,827.09
Total Cost (\$-HST)	\$14,143.14	\$12,821.09	\$13,247.14	\$10,451.19	\$6,781.82	\$5,427.79	\$3,684.55	\$3,317.91	\$4,586.37	\$9,278.45	\$9,854.75	\$11,919.74	\$105,513.94
Average Cost per kWh	\$0.103	\$0.10	\$0.10	\$0.10	\$0.12	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.10	0.10813582
Average Cost per kW	\$10.50	\$10.50	\$10.50	\$10.50	\$10.50	\$10.50	\$10.50	\$10.50	\$10.50	\$10.50	\$10.50	\$10.50	\$10.50

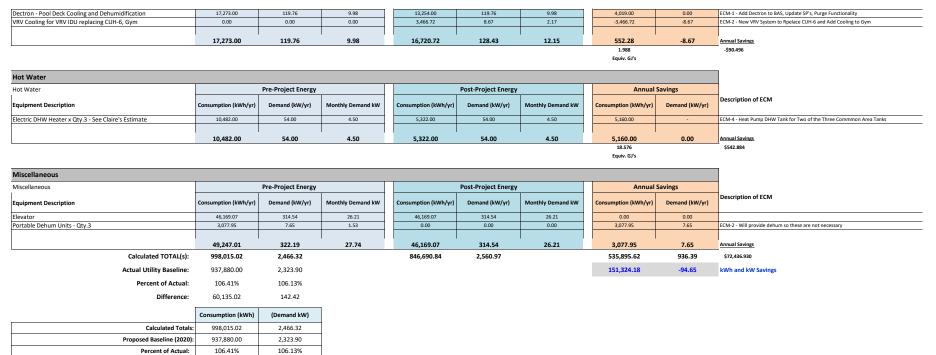
Summer Gardens

SUMMARY OF TWO METERS

	6-Jan-2020	6-Feb-2020	6-Mar-2020	9-Apr-2020	11-May-2020	5-Jun-2020	8-Jul-2020	6-Aug-2020	4-Sep-2020	7-Oct-2020	9-Nov-2020	7-Dec-2020	
Period	6-Feb-2020	6-Mar-2020	9-Apr-2020	11-May-2020	5-Jun-2020	8-Jul-2020	6-Aug-2020	4-Sep-2020	7-Oct-2020	9-Nov-2020	7-Dec-2020	7-Jan-2021	
2020	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	TOTAL
Days in billing period	31	29	34	32	25	33	29	29	33	33	28	31	367
Consumption (kWh)	132,820	119,880	128,640	98,240	44,640	47,660	31,440	30,040	41,160	76,800	79,920	106,640	937,880
Demand (kW)	275.4	266.4	245.0	210.2	235.1	123.8	100.8	83.9	108.9	210.4	227.4	236.6	2,324
Energy Cost (\$-HST)	\$6,761.62	\$6,540.65	\$6,015.24	\$5,160.83	\$5,480.00	\$3,039.54	\$2,474.84	\$2,059.92	\$2,673.71	\$5,165.74	\$5,583.12	\$11,210.80	\$62,166.01
Energy Cost (\$-HST)	\$6,994.27	\$5,992.00	\$7,165.21	\$5,056.31	\$0.00	\$2,060.31	\$1,014.86	\$1,193.00	\$1,743.62	\$3,123.76	\$3,098.56	\$1,409.35	\$38,851.25
Demand Cost (\$-HST)	\$2,890.88	\$2,796.40	\$2,571.77	\$2,206.47	\$2,467.84	\$1,299.53	\$1,058.10	\$880.70	\$1,143.12	\$2,208.57	\$2,387.01	\$2,483.59	\$24,393.98
Total Cost (\$-HST)	\$16,646.77	\$15,329.05	\$15,752.22	\$12,423.61	\$7,947.84	\$6,399.38	\$4,547.80	\$4,133.62	\$5,560.45	\$10,498.07	\$11,068.69	\$15,103.74	\$125,411.24
Average Cost per kWh	\$0.10	\$0.10	\$0.10	\$0.10	\$0.12	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.12	\$0.11
Average Cost per kW	\$10.50	\$10.50	\$10.50	\$10.50	\$10.50	\$10.50	\$10.50	\$10.50	\$10.50	\$10.50	\$10.50	\$10.50	\$10.50


Common Area (sq.ft): 23,633

Energy Index (kWh / sq.ft / year): 39.685



APPENDIX B – Energy Calculations

Calculation of Energy Consumption by Equipment End-Use

Calculation of Energy Consumption by Equipment End-Use

DOAS Fan Energy

Current Energy Use

			Nominal HP	*Peak of 15kW (23-amp)
SF-1 - Penthouse	DOAS		-	
Eff.	kw	Run Hours	kWh	
-	12.200	8760	106,872	

kw = (hp*0.746) / (%EF)

_oad Profile & Pro	pjected Annual Energ	ly Use		Weighted Demand
Flow	% of Time	Run Hours	kWh]
100%	100%	8,760	106,872	12.20
90%	0%	0	0	10.98
80%	0%	0	0	9.76
70%	0%	0	0	8.54
60%	0%	0	0	7.32
50%	0%	0	0	6.10
40%	0%	0	0	4.88
30%	0%	0	0	3.66
20%	0%	0	0	2.44
10%	0%	0	0	1.22
0%	0%	0	0	0.00
	100%	8.760	106.872	W.AVG: 12.20

			7.5 Nominal HP	
EF-1 - Penthouse	DOAS		6.7	bhp
Eff.	kw	Run Hours	kWh	
88.7%	5.635	8760	49,362	
	kw = (hp*0.746) / (%EF	F)		

Load Profile & Pro	jected Annual Energ	y Use		Weighted	Demand
Flow	% of Time	Run Hours	kWh] _	
100%	100%	8,760	49,362		5.63
85%	0%	0	0		4.79
80%	0%	0	0		4.51
70%	0%	0	0		3.94
60%	0%	0	0		3.38
50%	0%	0	0		2.82
40%	0%	0	0		2.25
30%	0%	0	0		1.69
20%	0%	0	0		1.13
10%	0%	0	0		0.56
0%	0%	0	0		0.00
	100%	8,760	49,362	W.AVG:	5.63
			kWh		kW
		TOTALS:	156,234] [17.8

I HP	*Peak of 15kW (23-amp)
h	
72	

kw 12.200

SF-1 - Penthouse DOAS

Eff.

-

Proposed Energy Use

kw = (hp*0.746) / (%EF)

Load Profile & Pro	ojected Annual Energ	ly Use		Weighted Demand
Flow	% of Time	Run Hours	kWh	7
100%	62%	5,431	66,261	12.20
90%	0%	0	0	10.98
80%	0%	0	0	9.76
70%	38%	3,329	13,930	8.54
60%	0%	0	0	7.32
50%	0%	0	0	6.10
40%	0%	0	0	4.88
30%	0%	0	0	3.66
20%	0%	0	0	2.44
10%	0%	0	0	1.22
0%	0%	0	0	0.00
	100%	8,760	80,190	W.AVG: 10.81

Run Hours

8760

Nominal HP

-

kWh

106,872

			7.5 Nominal HP	
EF-1 - Penthouse	DOAS		6.7	bhp
Eff.	kw	Run Hours	kWh	
89%	5.635	8760	49,362	
	kw = (hp*0.746) / (%EF)		

	jected Annual Energ			Weighted I	Jemano
Flow	% of Time	Run Hours	kWh		
95%	62%	5,431	26,240		5.35
90%	0%	0	0		5.07
80%	0%	0	0		4.51
70%	38%	3,329	6,434		3.94
60%	0%	0	0		3.38
50%	0%	0	0		2.82
40%	0%	0	0		2.25
30%	0%	0	0		1.69
20%	0%	0	0		1.13
10%	0%	0	0		0.56
0%	0%	0	0		0.00
	100%	8,760	32,673	W.AVG:	4.82
			kWh		kW
		TOTALS:	112,864		15.6

AH-1,AH-2 Fan Energy

	Current	Energy Use					Proposed	l Energy Use	
			Nominal HP						Nominal HP
i-1			1.0		AH-	1 - Replace w	vith VRV Unit		-
Eff.	kW	Run Hours	kWh			Eff.	kW	Run Hours	kWh
83%	0.904	8760	7,921			-	0.760	8760	6,658
k	w = (hp*0.746) / (%E	F)		_			kw = (hp*0.746) / (%El	F)	
			Nominal HP						Nominal HP
1-2			1.0	bhp	AH-2	2 - Replace w	vith VRV Unit		-
Eff.	kw	Run Hours	kWh			Eff.	kw	Run Hours	kWh
83.0%	0.899	0	0			-	0.760	8760	6,658
k	w = (hp*0.746) / (%E	F)		_			kw = (hp*0.746) / (%El	F)	

Exhuast Fan Energy

Current Energy Use

	kWh	kW
EF-2 - Dryer Exhaust	6,283.62	0.72
EF-3 - Dryer Exhaust	6,283.62	0.72
RE-1 - Roof Exhauster	0.00	0.24
RE-2 - Roof Exhauster	0.00	0.24
RE-3 - Roof Exhauster	1,075.96	0.72
EF-4 - Garbage Rm Exhaust	2,094.54	0.24
EF-5 - Exhaust for AH-1	2,792.44	0.32
EF-6 - Parkade Exhaust CO/NO	159.39	0.32
EF-7 - Parkade Exhaust CO/NO	159.39	0.32
EF-8 - Parkade Exhaust CO/NO	239.10	0.48
EF-9 - Parkade Exhaust CO/NO	239.10	0.48
EF-10 - Parkade Exhaust CO/NO	239.10	0.48
EF-11 - P1 Electrical Vault Exhaust	239.10	0.32
EF-12 - Ground Floor Lounge Exhaust	0.00	0.32
TOTAL(s)	19,805.35	5.90

			HP
EF-2 - Dryer Exhau	ust		0.750
Eff.	kw	Run Hours	kWh
78%	0.72	8760	6,284
10/0	kw = (hp*0.746) / (%EF)	0.00	0,201
			HP
EF-3 - Dryer Exhau	ust		0.750
Eff.	kw	Run Hours	kWh
78%	0.72	8760	6,284
	kw = (hp*0.746) / (%EF)		
DE 1 Deef Exher	uter (Cmake Extraction)		HP
	ster (Smoke Extraction)		0.250
Eff.	kw	Run Hours	kWh
78%	0.24 kw = (hp*0.746) / (%EF)	0	0
	KW = (np=0.746)7 (%EF)		HP
RE-2 - Roof Exhau	ster Penthouse Exhaust (B	ROKEN?)	0.250
Eff.	kw	Run Hours	kWh
78%	0.24	0	0
1070	0.24 kw = (hp*0.746) / (%EF)	v	v
			HP
RE-3 - Roof Exhau	ster Elevator Machine Roon	n	0.750
Eff.	kw	Run Hours	kWh
78%	0.72	1500	1,076
	kw = (hp*0.746) / (%EF)		HP
EF-4 - Garbage Rn	n Exhaust		0.250
Eff.		<u> </u>	
Eff. 78%	kw 0.24	Run Hours 8760	kWh 2,095
1070	0.24 kw = (hp*0.746) / (%EF)	0/00	2,095
			HP
EF-5 - Exhaust for	AH-1		0.333
Eff.	kw	Run Hours	kWh
78%	0.32	8760	2,792
	kw = (hp*0.746) / (%EF)		
FF-6 - Parkade Ex	haust CO/NO (BROKEN?)		HP 0.333
Eff.	kw	Run Hours	kWh
78%	0.32	500	159
	kw = (hp*0.746) / (%EF)		
			HP
EF-7 - Parkade Ex	haust CO/NO (BROKEN?)		0.333
Eff.	kw	Run Hours	kWh
78%	0.32	500	159
	kw = (hp*0.746) / (%EF)		HP
EF-8 - Parkade Ex	haust CO/NO		0.500
Eff.	kw	Run Hours	kWh
78%	0.48	500	239
	kw = (hp*0.746) / (%EF)		
			HP
EF-9 - Parkade Ex			0.500
Eff.	kw	Run Hours	kWh
78%	0.48 kw = (hp*0.746) / (%EF)	500	239
	KW = (NP 0.740)7 (70EF)		HP
EF-10 - Parkade E	xhaust CO/NO		0.500
Eff.	kw	Run Hours	kWh
78%	0.48	500	239
	kw = (hp*0.746) / (%EF)		
			HP
EF-11 - P1 Electric			0.333
Eff.	kw	Run Hours	kWh
78%	0.32 kw = (hp*0.746) / (%EE)	750	239

0.32 kw = (hp*0.746) / (%EF)

	kWh	kW
EF-2 - Dryer Exhaust	3,916.50	0.72
EF-3 - Dryer Exhaust	3,916.50	0.72
RE-1 - Roof Exhauster	0.00	0.24
RE-2 - Roof Exhauster	119.55	0.24
RE-3 - Roof Exhauster	1,075.96	0.72
EF-4 - Garbage Rm Exhaust	2,094.54	0.24
EF-5 - Exhaust for AH-1	4,380.00	0.50
EF-6 - Parkade Exhaust CO/NO	159.39	0.32
EF-7 - Parkade Exhaust CO/NO	159.39	0.32
EF-8 - Parkade Exhaust CO/NO	239.10	0.48
EF-9 - Parkade Exhaust CO/NO	239.10	0.48
EF-10 - Parkade Exhaust CO/NO	239.10	0.48
EF-11 - P1 Electrical Vault Exhaust	239.10	0.32
EF-12 - Ground Floor Lounge Exhaust	0.00	0.32
TOTAL(s)	16,778.23	6.08

Proposed Energy Use

			HP
EF-2 - Dryer Exhau	st		0.750
Eff.	kw	Run Hours	kWh
78%	0.72	5460	3,917
	kw = (hp*0.746) / (%EF)		
EF-3 - Dryer Exhau	of		HP 0.750
Eff. 78%	kw	Run Hours 5460	kWh 3,917
10%	0.72 kw = (hp*0.746) / (%EF)	5460	3,917
			HP
RE-1 - Roof Exhaus	ster (Smoke Extraction)		0.250
Eff.	kw	Run Hours	kWh
78%	0.24	0	0
	kw = (hp*0.746) / (%EF)		HP
RE-2 - Roof Exhaus	ster Penthouse Exhaust (BROKEN?)	0.250
Eff.	kw	Run Hours	kWh
78%	0.24	500	120
	kw = (hp*0.746) / (%EF)		
RF-3 - Roof Exhaus	ster Elevator Machine Ro	om	HP 0.750
Eff.	kw	Run Hours	kWh
78%	0.72	1500	1,076
	kw = (hp*0.746) / (%EF)		
	F ut and		HP
EF-4 - Garbage Rm			0.250
Eff. 78%	kw 0.24	Run Hours 8760	kWh 2,095
70%	kw = (hp*0.746) / (%EF)	0700	2,035
			HP
EF-5 - Exhaust <mark>Rep</mark>			-
Eff.	kw	Run Hours	kWh
-	0.50 kw = (hp*0.746) / (%EF)	8760	4,380
			HP
EF-6 - Parkade Exh	aust CO/NO (BROKEN?)		0.333
Eff.	kw	Run Hours	kWh
78%	0.32 kw = (hp*0.746) / (%EF)	500	159
	(iip 0.710)7 (3021)		HP
EF-7 - Parkade Exh	aust CO/NO (BROKEN?)		0.333
Eff.	kw	Run Hours	kWh
78%	0.32 kw = (hp*0.746) / (%EF)	500	159
	KW = (IIP 0.740)7 (76EP)		HP
EF-8 - Parkade Exh	aust CO/NO		0.500
	kw	Run Hours	kWh
Eff.			
Eff. 78%	0.48	500	239
	0.48 kw = (hp*0.746) / (%EF)	500	
	kw = (hp*0.746) / (%EF)	500	239 HP 0.500
78%	kw = (hp*0.746) / (%EF)	500 Run Hours	HP 0.500 kWh
78% EF-9 - Parkade Exh	kw = (hp*0.746) / (%EF) haust CO/NO kw 0.48		HP 0.500
78% <i>EF-9 - Parkade Exh</i> Eff.	kw = (hp*0.746) / (%EF) aust CO/NO kw	Run Hours	HP 0.500 kWh 239
78% EF-9 - Parkade Exh Eff. 78%	kw = (hp*0.746) / (%EF) waust CO/NO kw 0.48 kw = (hp*0.746) / (%EF)	Run Hours	HP 0.500 kWh
78% EF-9 - Parkade Exh Eff. 78% EF-10 - Parkade Ex	kw = (hp*0.746) / (%EF) wast CO/NO kw 0.48 kw = (hp*0.746) / (%EF) haust CO/NO	Run Hours 500	HP 0.500 kWh 239 HP 0.500
78% EF-9 - Parkade Exh Eff. 78%	kw = (hp*0.746) / (%EF) aust CO/NO kw 0.48 kw = (hp*0.746) / (%EF) haust CO/NO kw 0.48	Run Hours	HP 0.500 kWh 239 HP
78% EF-9 - Parkade Exh Eff. 78% EF-10 - Parkade Ex Eff.	kw = (hp*0.746) / (%EF) aust CO/NO kw 0.48 kw = (hp*0.746) / (%EF) haust CO/NO kw	Run Hours 500 Run Hours	HP 0.500 kWh 239 HP 0.500 kWh 239
78% EF-9 - Parkade Exh Eff. 78% EF-10 - Parkade Ex Eff. 78%	kw = (hp*0.746) / (%EF) aust CO/NO kw 0.48 kw = (hp*0.746) / (%EF) haust CO/NO kw 0.48 kw = (hp*0.746) / (%EF)	Run Hours 500 Run Hours	HP 0.500 kWh 239 HP 0.500 kWh 239 HP
78% EF-9 - Parkade Exh Eff. 78% EF-10 - Parkade Ex Eff. 78% EF-11 - P1 Electrica	kw = (hp*0.746) / (%EF) aust CO/NO kw 0.48 kw = (hp*0.746) / (%EF) haust CO/NO kw 0.48 kw = (hp*0.746) / (%EF) al Vault Exhaust	Run Hours 500 Run Hours 500	HP 0.500 kWh 239 HP 0.500 kWh 239 HP 0.333
78% EF-9 - Parkade Exh Eff. 78% EF-10 - Parkade Ex Eff. 78%	kw = (hp*0.746) / (%EF) aust CO/NO kw 0.48 kw = (hp*0.746) / (%EF) haust CO/NO kw 0.48 kw = (hp*0.746) / (%EF)	Run Hours 500 Run Hours	HP 0.500 kWh 239 HP 0.500 kWh 239 HP

Exhuast Fan Energy

EF-2 - Dryer Exhaust			0.750
			HP
EF-12 - Ground Floor	Lounge Exhaust (Bl	ROKEN?)	0.333
Eff.	kw	Run Hours	kWh
78%	0.32	0	0
	kw = (hp*0.746) / (%EF)		

Dryer Exhaust	yer Exhaust			
			HP	
2 - Ground Floor Lounge Exhaust (BROKEN?)		0.333		
	Lounge Exhauor (En	e (12)(1)	0.000	
Eff.	kw	Run Hours	kWh	

Unit Heater Fan Energy

Proposed E	nergy Use		
	kWh	kW	ECM Summary
HUH-1 - Penthouse	0.00	0.00	- Add to BAS
HUH-2 - Elevator Machine Room	0.00	0.00	- Add to BAS
CUH-1 - Front Entrance	526.03	0.19	- Add to BAS
CUH-2 - Front Entrance	286.92	0.13	- Add to BAS
CUH-3 Mail Room	0.00	0.00	
CUH-4 Delivery Room	0.00	0.00	
CUH-5 Rear Entrance	573.85	0.19	
CUH-6 Pool Stairwell	237.57	0.12	 Replace with VRV
CUH-7 Pool Area Washrooms	573.79	0.32	- Add to BAS
TOTAL(s)	2,198.16	0.95	

		F	an Energy Captured in Heati	ng
HUH-1 - Penthouse				
Eff.	kw	Run Hours	kWh	
78%	0.00	0	0	
	kw = (hp*0.746) / (%EF)	_	an Energy Captured in Heati	
HUH-2 - Elevator M	achine Room		an Energy Captured in Heatil 0.000	ng
Eff.	kw	Run Hours	kWh	
EII. 78%	0.00		0	
1070	kw = (hp*0.746) / (%EF)	U	U	
			HP	
CUH-1 - Front Entra	ance		0.200	Add t
Eff.	kw	Run Hours	kWh	
78%	0.19	2750	526	
	kw = (hp*0.746) / (%EF)			
			HP	
CUH-2 - Front Entra	ance		0.133	Add t
Eff.	kw	Run Hours	kWh	
78%	0.13	2250	287	
	kw = (hp*0.746) / (%EF)	F	an Energy Captured in Heati	na
CUH-3 Mail Room			3)	
Eff.	kw	Run Hours	kWh	ľ
78%	0.00	0	0	
	kw = (hp*0.746) / (%EF)	5	an Energy Captured in Heati	
CUH-4 Delivery Roo	om	n	an Energy Captured in rieau	ig
Eff.	kw	Run Hours	kWh	
78%	0.00		0	
	kw = (hp*0.746) / (%EF)			
CUH-5 Rear Entran	<u>60</u>		HP 0.200	ľ
Eff.	kw	Run Hours	kWh	l
78%	0.19	3000	574	
10/0	kw = (hp*0.746) / (%EF)		•	1
			HP	
CUH-6 Pool Stairwe	ell		0.124	VRV
Eff.	kw	Run Hours	kWh	
78%	0.12 kw = (hp*0.746) / (%EF)	2000	238	
	w = (ip 0.740)7 (%EF)		HP	
CUH-7 Pool Area W	ashrooms		0.333	1
Eff.	kw	Run Hours	kWh	

kw = (hp*0.746) / (%EF)

Current Energy Use

	kWh	kW
HUH-1 - Penthouse	0.00	0.00
HUH-2 - Elevator Machine Room	0.00	0.00
CUH-1 - Front Entrance	573.85	0.19
CUH-2 - Front Entrance	318.80	0.13
CUH-3 Mail Room	0.00	0.00
CUH-4 Delivery Room	0.00	0.00
CUH-5 Rear Entrance	573.85	0.19
CUH-6 Pool Stairwell	382.56	0.19
CUH-7 Pool Area Washrooms	573.79	0.32
TOTAL(s)	2,422.85	1.02

- Penthous	<u>a</u>		Fan Energy Capture
Eff.	kw	Run Hours	kWh
78%	0.00	0	0
	kw = (hp*0.746) / (%EF)		Fan Energy Capture
- Elevator	Machine Room		, an group of provide
Eff.	kw	Run Hours	kWh
78%	0.00	0	0
	kw = (hp*0.746) / (%EF)		
- Front En	trance		HP 0,200
Eff.	kw	Run Hours	kWh
78%	0.19	3000	574
10/0	kw = (hp*0.746) / (%EF)		••••
	-		Qty.2 @ 1/15-I
- Front En	rance		0.133
Eff.	kw	Run Hours	kWh
78%	0.13	2500	319
	kw = (hp*0.746) / (%EF)		Fan Energy Capture
Mail Room	1		Pan Energy Capture
Eff.	kw	Run Hours	kWh
78%	0.00		0
	kw = (hp*0.746) / (%EF)		Fan Energy Capture
Delivery R	oom		
Eff.	kw	Run Hours	kWh
78%	0.00		0
	kw = (hp*0.746) / (%EF)		HP
-			HP 0.200
-		Run Hours	
Rear Entra	nce kw 0.19	Run Hours 3000	0.200
Rear Entra Eff.	nce kw		0.200 kWh 574
Rear Entra Eff. 78%	kw 0.19 kw = (hp*0.746) / (%EF)		0.200 kWh 574 HP
Rear Entra Eff. 78% Pool Stair	nce kw 0.19 kw = (hp*0.746) / (%EF) vell	3000	0.200 kWh 574 HP 0.200
Rear Entra Eff. 78%	kw 0.19 kw = (hp*0.746) / (%EF)		0.200 kWh 574 HP

			HP
CUH-7 Pool Area Wa	0.333		
Eff.	kw	Run Hours	kWh
78%	0.32	1800	574
	kw = (hp*0.746) / (%EF)		

VRV - New Head FXAQ24PVJU

Pump Energy

Current Energy Use							
Pool Pump			1.0				
Eff.	kw	Run Hours	kWh				
78%	0.956	8760	8,378				
	kw = (hp*0.746) / (%EF)						
			HP				
Booster Pump			10.00				
Eff.	kw	Run Hours	kWh				
90%	8.335	8760	73,016				

kw = (hp*0.746) / (%EF)

Proposed Energy Use						
Pool Pump			1.0			
Eff.	kw	Run Hours	kWh			
78%	0.956	8760	8,378			

			HP
Booster Pump			10.0
Eff.	kw	Run Hours	kWh
92%	8.109	5000	40,543
	kw = (hp*0.746) / (%EF)		

Page 1 of 1

Domestic Booster Pump System

DOMESTIC WATER PRESSURE BOOSTER SYSTEM

EQUIP.	SERVICE	NO. OF	GPM/EA		SYSTEM PRESS	URE VALUES		MC	TOR DATA AN	D VALUES		CO	NTROL PANEL			DESIGN BASIS
NO.	LOCATION	PUMPS	PUMP	TDH [Feet]	SUCTION [PSI]	BOOST [PSI]	SET [PSI]	RPM	HP	kWh PER YR.	VOLTAGE	PHASE	FULL LOAD	MAX. SCCR	REMARKS	MODEL
		2	45	180	35	77.92	112.92	3,450	5	11137.51	575	Three Phase	12.4	100KAIC	1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11	QUANTUMFLO-35205: GENIUS DUPLEX QVD_ 10/5

1. NET BOOST PRESSURE IS CALCULATED BY SYSTEM SET PRESSURE MINUS SUCTION PRESSURE LESS SYSTEM LOSSES OF 5 PSI

2. SYSTEM SUBMITTALS SHALL INCLUDE CERTIFICATE NUMBER FOR NSF61 CERTIFICATION, UL508A AND QCZJ 3RD PARTY COMPLIANCE.

3. SYSTEM CONTROLS MUST COMPLY WITH AND PROVIDE FOR EITHER CONTROL LOGIC OR REMOTE SENSOR IN ACCORDANCE WITH ANSI/ASHRAE/IES STANDARD 90.1 ENERGY STANDARD

4. PROVIDE 5-YEAR WARRANTY ON COMPLETE SYSTEM AND INCLUDE WARRANTY CERTIFICATE WITH DETAILS IN SUBMITTALS

5. SYSTEM SHALL BE PRE-SET TO SYSTEM SITE CONDITIONS BY SIMULATING SUCTION PRESSURE. HYDROSTATIC-ONLY TESTING IS NOT ACCEPTABLE.

6. THE INDUSTRIAL CONTROLLER SHALL BE IN COMPLIANCE WITH CURRENT NEC, SECTION 409.110 HAVING A MAXIMUM 100K AVAILABLE FAULT CURRENT.

7. SCCR RATINGS MUST BE INCLUSIVE OF ALL COMPONENTS WITHIN THE ENCLOSURE WITHOUT THE NEED TO PROVIDE ADDITIONAL UPSTREAM PROTECTION.

8. EQUAL SYSTEMS MUST SHOW MATHEMATICAL ANALYSIS PROVING THAT THE ALTERNATE SUPPLIER MEETS OR EXCEEDS THE KW CAPACITY LISTED.

9. PROVIDE THE FOLLOWING OPTIONS: GENERAL ALARM DRY CONTACT RELAY; MONITORS: SENSOR FAIL, LOW SUCTION/LEVEL & HIGH SYSTEM AND VFD FAULTS, PERMISSIVE RUN INPUT. REQUIRES BMS DRY CONTACT RELAY. ALLOWS THE SYST

10. REPRESENTATIVE: ENVIROAIR INDUSTRIES, INC.. PHONE: (514) 738-9865

11. BASED ON PROJECT: 1470 SUMMER STREET (035205)

Ventilation Air DOAS - BAS

BASE CASE Energy Use	Proposed Energy Use - Daytime Hours	Proposed Energy Use - After Hours
Based on Sample Airflow Tests: 15,940 Design Supply Airflow Rate: 20,200 Design Exhaust Airflow Rate: 21,500 Hrs per Day 24.0 24.0	Based on Sample Airflow Tests: 15,940 15,940 Hrs per Day Design Supply Airflow Rate: 20,200 15.0 Design Exhaust Airflow Rate: 21,500	Based on Sample Airflow Tests: 15,940 8,000 Hrs per Day Design Supply Airflow Rate: 20,200 Design Exhaust Airflow Rate: 21,500
sh-Air Replacement - Sensible Heating Load	Fresh-Air Replacement - Sensible Heating Capacity	Fresh-Air Replacement - Sensible Heating Capacity
Q (Btu/hr) Total cfm Temp In. (F) Temp Out. (F) Q (kW) 1,118,964.60 15,940 66 1 327.94	Q (Btu/hr) Total cfm Temp In. (F) Temp Out. (F) Q (kW) 1,118,988.00 15,940 66 1 327.94	Q (Btu/hr) Total cfm Temp In. (F) Temp Out. (F) Q (kW) 561,600.00 8,000 66 1 164.59
nsible Heating Load 118.1 Q (Btw/hr) Operating Hours 1,118,964.60 24.0	Q (Btu/hr) Operating Hours 1,118,988.00 15.0	Q (Btu/hr) Operating Hours 561,600.00 9.0
nual Cost for Electric	Annual Cost for Electric	Annual Cost for Electric
Efficiency HDD (66F) Temp In. (F) Temp Out (F) Annual kWh's 100.0% 7.274 66 1 880,754.00	Efficiency HDD (66F) Temp In. (F) Temp Out (F) Annual kWh's 100.0% 7,274 66 1 550,482.76	Efficiency HDD (66F) Temp In. (F) Temp Out (F) Annual kWh's 100.0% 7,274 66 1 165,766.45
nual Cost for Heat Pump EER Temp In. (C) Temp Out (C) HDD (s18.9C) Annual kWh 17.07 -17 19 4.041 176,047.23	Annual Cost for Heat Pump EER Temp In. (C) Temp Out (C) HDD (s18.9C) Annual kWh 17.07 -17 19 4,041 110,034.26	EER Temp In. (C) Temp Out (C) HDD (≤18.9C) Annual kWh 17.07 -17 19 4,041 33,134.53
Total Annual Heating kWh's: 880,754.00	64.44 Total Annual Heating kWh's: 550,482.76	64.44 Total Annual Heating kWh's: 165,766.45
ERV Effectiveness: 64%	Heat Coil Effectiveness: 64%	Heat Coil Effectiveness: 64%
Total Annual Heating kWh's: 317,071.44	Total Annual Heating kWh's: 198,173.79	Total Annual Heating kWh's: 59,675.92
AIR HP Total Annual Heating kWh's: 176,047.23	AIR HP Total Annual Heating kWh's: 110,034.26	AIR HP Total Annual Heating kWh's: 33,134.53
	F-HDD C-HDD	F-HDD C-HDD
	To convert °F HDD to °C HDD: °C HDD = (5/9) x (°F HDD 7559.0 4199.4	To convert °F HDD to °C HDD: °C HDD = (5/9) x (°F HDD 7559.0 4199.4
	To convert °C HDD to °F HDD: °F HDD = (9/5) x (°C HDD 5761.6 3200.9	To convert °C HDD to °F HDD: °F HDD = (9/5) x (°C HDD 7273.6 4040.9

Ventilation Air AH-1

Q (Btu/hr) 188,480.00 Operating Hours 24.0 nual Cost for Electric Efficiency HDD (66F) Temp In. (F) Temp Out (F) Annual Cost for Heat Pump EER Temp In. (C) Temp In. (C) Temp Out (C) HDD (518.9C) Annual KWh 55.247.61 Sh-Air Replacement - Latent Load - Dehumidication Q (Btu/hr) Cotal cfm A (Btu/hr) Total cfm Aunual Cost for Heat Pump Esh-Air Replacement - Latent Load - Dehumidication Q (Btu/hr) Cotal cfm Aunual Cost for Heat Pump Esh-Air Replacement - Latent Load - Dehumidication Q (Btu/hr) Cotal cfm Aunual Cost for Heat Pump Esh Air Replacement Latent Load - Dehumidication Q (Btu/hr) Operating Hours 0.00 24.0 Annual Cost for Chiller EER EER Temp In. (C) Temp Out (C) Colling Load Q (Btu/hr) Q (Btu/hr) Total cfm Temp In. (F) Temp In. (F) Temp Out (F) Q (KW) 28,040.00 24.0 24.0		BASE CASE	E Energy Use - He	eating Only						
Q (Bluhh) Total cfm Temp In. (F) Temp Out. (F) Q (WV) 1563.480.00 2400 66 1 43.38 Wibb heating Load Samible Heating Load 1 1563.480.00 2.400 65 1 Value Cost for Electric Efficiency HDD (6F) Temp In. (F) Temp Out. (F) 43.38 value Cost for Heat Pump Efficiency HDD (7F) Temp In. (F) Temp Out. (F) 43.38 value Cost for Heat Pump Efficiency HDD (6F) Temp In. (F) Temp Out. (F) 43.38 value Cost for Heat Pump Efficiency HDD (7F) Temp In. (F) Temp Out. (F) 40.41 8.19 -17.2 19 4.041 55.247.61 40.41 52.277.42857 Word HP Samitable Heating Load Q (Bluhh) Operating Hours 0.0005 0.000 0.00138 0.00055 ath Replacement - Latent Load - Dehumidication Q (WW) Q (Bluhh) Operating Hours 0.0005 0.000 24.0 134 0.0005 0.0005 144 0.20138 0.0005 S									2,400	Hrs
Q (Buhh) Total cfm Temp In. (F) Temp Out. (F) Stable Meating Load Q (Buhh) Operating Hours Stable Meating Load Q (Buhh) Total cfm Temp In. (C) Temp Out (C) HDD (SF) Temp In. (C) Temp In. (C) Temp Out (C) Buhh) Operating Hours Q (Buhh) Operating Hours Q (Buhh) Optic Last Q (Buhh) Operating Hours Q (Buhh) Optic Last Q (Buhh) Operating Hours										
188,480.00 2.400 66 1 nable Heating Load (Bturlin) Operating Hours (Bturlin) Operating Hours 2.400 66 1 (Bturlin) Operating Hours 2.400 66 1 100.04 72.4 0.0 1 132.613.16 1 nual Cost for Heat Pump EER Temp In. (F) Temp Out (F) Annual KWh 2 7 -1 sh.18 -17.2 19 4.041 85.247.61 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 </th <th></th>										
Sensible Heating Load Q (Btu/m) Operating Hours mual Cost for Electric Efficiency HDD (6F) Temp In. (F) Temp Out (F) Annual KWh's 0.00 7,274 66 1 32,613.16 mual Cost for Electric Efficiency HDD (6F) Temp Out (F) Annual KWh's 1 32,613.16 Annual KWh's 100.0% 2 7 -1 mual Cost for Heat Pump EER Temp Out (C) HDD (518.9C) Annual KWh 2 7 -1 Bish-Air Replacement - Latent Load - Dehumidication Q (KW) Q (KW) 0.0138 0.0085 0.00138 0.0085 0.00138 0.0085 0.00138 0.0085 0.00138 0.0085 0.00138 0.0085 0.00138 0.0085 0.00138 0.0085 0.00138 0.0085 0.00138 0.0085 0.00138 0.0085 0.00138 0.0085 0.00138 0.0085 0.00138 0.0085 0.00138 0.0085 0.00138 0.0085 0.00138 0.0085 0.00138<				• • •					• • • •	Q
Q (Btu/hr) Operating Hours Q (Btu/hr) Operating Hours Q (Btu/hr) Deprating Hours Q (Btu/hr) Total Annual Cost for Electric EER Temp In. (F) Temp Out (F) Annual Cost for Heat Pump EER Cost for Heat Pump EER Q (Btu/hr) Total Annual Cost for Heat Pump EER Temp In. (C) Q (Btu/hr) Total Annual Cost for Heat Pump EER Temp In. (C) Q (Btu/hr) Total Annual Cost for Heat Pump EER Temp In. (C) Q (Btu/hr) Total Annual Cost for Heat Pump EER Temp In. (C) Q (Btu/hr) Total Annual Cost for Heat Pump EER Temp In. (C) Temp Out (C) Q (Btu/hr) Total Annual Cost for Heat Pump EER Temp In. (C) Temp Out (C) Q (Btu/hr) Total Annual Cost for Heat Pump EER Temp In. (F) Temp Out (C) Q (Btu/hr) Total Annual Heating kWhr: 18.60 22 28 Q (Btu/hr) Total Annual Cooling kWhr: 0.00	168,480.00	2,400	66	1	49.38	168,480.00	2,400	66	1	4
Q (Butuhr) Operating Hours 24.0 Annual Cost for Electric Efficiency HDD (6FF) Total Annual Cost for Electric Efficiency HDD (6FF) Total Annual Cost for Heat Pump EER Temp In. (C) Total Annual Cost for Heat Pump EER Temp In. (C) Q (Butuhr) Total Annual Heating KWh*: 0.000 22.000 0.000 24.00 Cost for Heat Pump HDD (c15.9C) esh-Air Replacement - Latent Load - Dehumidication Q (Butuhr) Q (Butuhr) Total Annual KWh 18.0 22 28 134 0.000 24.0 0.001 24.0 MDD (C) CDD Annual Cost for Heat Pump EER Temp In. (C) Temp In. (C) Temp Out (C) CDD Annual KWh 18.0 122 28.00.00 24.0 Cost for Heat Pump EER Temp In. (F) Total Annual Cooling KWh: 0.00 18.00	nsible Heating	Load				Sensible Heatin	a Load			
Image: Section Annual Cost for Electric Efficiency HDD (6FF) Temp Dut (F) Annual KWI's Numal Cost for Head Pump EFR Temp In. (C) Temp Dut (C) HDD (718 9C) esh-Air Replacement - Latent Load - Dehumidication Multiply Total Annual KWI's Society of Head Pump esh-Air Replacement - Latent Load - Dehumidication Multiply Cost of Head Pump HDD (718 9C) esh-Air Replacement - Latent Load - Dehumidication Multiply Cost of Head Pump HDD (718 9C) esh-Air Replacement - Latent Load - Dehumidication Multiply Cost of Head Pump HDD (718 9C) esh-Air Replacement - Latent Load - Dehumidication Multiply Cost of Head Pump HDD (718 9C) esh-Air Replacement Multiply Cost of Head Pump HDD (718 9C) Multiply g (Btu/hr) 22.400 0.0138 0.0085 0.000 MULtiply state Cost Cor Chiller Multiply Multiply Multiply Multiply Multiply Multiply Multiply G(Btu/hr) 2.400 Temp In. (F) Temp Dut (C) CDD CDD										
Efficiency HDD (68F) Temp In. (F) Temp Dut (F) Annual KWh's 100.0% 7.274 66 1 132,813.16 mual Cost for Heat Pump Efficiency HDD (7F) Temp Dut (F) Temp Dut (F) 8.10 -17.2 19 4,041 55,247.61 8.10 -17.2 19 4,041 55,247.61 ash-Air Replacement - Latent Load - Dehumidication Q (Btu/hr) Total of M H2 Q (KW) Q (Btu/hr) Total of M H2 Q (KW) Q (Btu/hr) Total of M H2 Q (Btu/hr) Total of M H2 Q (KW) Q (Btu/hr) Total of M H2 Q (Btu/hr) Total of M H2 Q (KW) Q (Btu/hr) Total of M H2 Q (Btu/hr) Total of M H2 Q (KW) Q (Btu/hr) Total of M H2 Q (Btu/hr) Total of M H2 Q (KW) Q (Btu/hr) Total of M H2 Q (Btu/hr) Total of M H2 Q (KW) Q (Btu/hr) Total of M H2 Q (Btu/hr) Total of M H2	168,480.00	24.0				168,480.00	24.0			
Efficiency HDD (68F) Temp In. (F) Temp Dut (F) Annual KWh's 100.0% 7.274 66 1 132,813.16 mual Cost for Heat Pump Efficiency HDD (7F) Temp Dut (F) Temp Dut (F) 8.10 -17.2 19 4,041 55,247.61 8.10 -17.2 19 4,041 55,247.61 ash-Air Replacement - Latent Load - Dehumidication Q (Btu/hr) Total of M H2 Q (KW) Q (Btu/hr) Total of M H2 Q (KW) Q (Btu/hr) Total of M H2 Q (Btu/hr) Total of M H2 Q (KW) Q (Btu/hr) Total of M H2 Q (Btu/hr) Total of M H2 Q (KW) Q (Btu/hr) Total of M H2 Q (Btu/hr) Total of M H2 Q (KW) Q (Btu/hr) Total of M H2 Q (Btu/hr) Total of M H2 Q (KW) Q (Btu/hr) Total of M H2 Q (Btu/hr) Total of M H2 Q (KW) Q (Btu/hr) Total of M H2 Q (Btu/hr) Total of M H2	nual Cost for I	Electric				Annual Cost for	Electric			
100.0% 7,274 66 1 132,813.16 numal Cost for Heat Pump 100.0% 22 7 -1 Bin Temp In. (C) Temp Dut (C) HDD (518.9C) Annual KWh Bin Treplacement - Latent Load - Dehumidication EER Temp In. (C) Temp Dut (C) HDD (518.9C) Bin Treplacement - Latent Load - Dehumidication Q(KW) 0.005 0.00 0.005 0.000 Intel Cost for Heat Pump Marcel Cost for Heat Pump Marcel Cost for Heat Pump Marcel Cost for Heat Pump Intel Cost for Chiller Marcel Cost for Heat Pump Marcel Cost for Heat Pump Marcel Cost for Heat Pump Bin State Cost for Heat Pump Marcel Cost for Heat Pump Marcel Cost for Heat Pump Marcel Cost for Heat Pump Bin State Cost for Heat Pump Marcel Cost for Heat Pump Marcel Cost for Heat Pump Marcel Cost for Heat Pump Bin State Cost for Heat Pump Marcel Cost for Heat Pump Marcel Cost for Heat Pump Marcel Cost for Heat Pump Bin Cost for Heat Pump Marcel Cost for Heat Pump Marcel Cost for Heat Pump State for Heat Pump Bin Cost for Heat Pump Marcel Cost for Heat Pump Marcel Cost for Heat Pump Marcel Cost for Heat Pump			Temp In. (F)	Temp Out (F)	Annual kWh's			Temp In. (F)	Temp Out (F)	Annua
EER Temp In. (C) Temp Out (C) HDD (s18.9C) Annual KWh 8.19 -17.2 19 4,041 55,247.61 ash-Air Replacement - Latent Load - Dehumidication Q (Btu/hr) 7 Total Cfm H1 H2 Q (KW) Q (Btu/hr) Total cfm H1 H2 Q (KW) Q (Btu/hr) Total cfm H1 H2 Q (KW) Q (Btu/hr) Z4.00 0.0138 0.0085 0.00 Colored to the set Pump H1 H2 Q (KW) act Load - Dehumidication Q (Btu/hr) Q (Btu/hr) Operating Hours 0.00 24.0 0.0138 0.0085 numal Cost for Chiller EER Temp In. (F) Temp Out. (C) CDD Annual KWh 0.00 24.0 Annual KWh 22 28 134 5.261948718 KW of Heat Pump EER Temp In. (F) Temp Out. (F) Q (KW) 29,040.00 24.0 Annual KWh 28,040.00 24.0 Annual Cost for Heat Pump 28,040.00 24.0 Annual Cost for Heat Pump 28,040.00 <td< td=""><td>-</td><td></td><td></td><td>• • • •</td><td></td><td></td><td></td><td>• • • •</td><td>• • • •</td><td>39</td></td<>	-			• • • •				• • • •	• • • •	39
EER Temp In. (C) Temp Out (C) HDD (s18.9C) Annual kWh 8.19 -17.2 19 4,041 55,247.81 ash-Air Replacement - Latent Load - Dehumidication Q (Btu/hr) 70tal cfm H1 H2 Q (KW) Q (Btu/hr) Total cfm H1 H2 Q (KW) Q (Btu/hr) Total cfm H1 H2 Q (KW) Q (Btu/hr) Qoperating Hours 0.00 0.0138 0.0085 0.00 insol Cost for Chiller EER Temp In. (C) Temp Out (C) CDD Annual kWh Q (Btu/hr) Operating Hours 24.0 0.0138 0.0085 is60 22 28 134 0.00 5261948718 KW of Heat Pump EER Temp In. (C) Temp Out (C) CDD Annual kWh 0.00 24.0 Annual KWh 22 28 134 5.261948718 KW of Heat Pump EER Temp In. (F) Temp Out (F) Q (KW) Q (Btu/hr) Operating Hours 0.00 24.0 Annual KWh										
8.19 -17.2 19 4,041 55,247,61 9.19 -17.2 19 4,041 9,257,142857 19 4,041 9.257,142857 KW of HP Fresh-Air Replacement - Latent Load - Dehumidication Q (Btu/hr) 2,400 0,0138 0,0065 0,000 tent Load - Dehumidication Q (Btu/hr) Operating Hours 0,00138 0,0005 tent Load - Dehumidication Q (Btu/hr) Operating Hours 2,400 0,0138 0,0005 tent Load - Dehumidication Q (Btu/hr) Operating Hours 2,400 0,0138 0,0005 tent Load - Dehumidication Q (Btu/hr) Operating Hours 2,400 0,00138 tent Load - Dehumidication Q (Btu/hr) Total cfm Temp Dut (C) CDD Annual KWh 0,00 72 83 0,00 Soling Load Q (Btu/hr) Operating Hours 2,400 72 Coling Load Q (Btu/hr) Dental Cos			Temp Out (C)		Annual kWh			Temp Out (C)	HDD (<18 9C)	Annı
9.257142857 KW of HP Q (Btu/hr) Total cfm H1 H2 Q (KW) Q (Btu/hr) Qoerating Hours 2.40 0.0138 0.0085 attent Load - Dehumidication Q (Btu/hr) Total Cost for Heat Pump Q (Btu/hr) Total cfm H1 H2 g (Btu/hr) Qoerating Hours 24.0 Annual KWh 24.0 Annual Cost for Heat Pump esh-Air Replacement Q (Btu/hr) Q (Btu/hr) Total cfm Temp In. (F) Temp Out. (F) Q (KW) Q (Btu/hr) Qoerating Hours 0.00 24.00 72 83 coling Load Q (Btu/hr) Qoerating Hours 24.0 Total Annual KWh 18.60 22 28 134 0.00 24.00 72 83 coling Load Q (Btu/hr) Qoerating Hours				· · ·				• • • •		55,2
Fresh-Air Replacement - Latent Load - Dehumidication Q(Btu/hr) 2,400 0.0138 0.0085 0.00 tent Load - Dehumidication Q(Btu/hr) 2,400 0.0138 0.0085 nual Cost for Chiller EER Temp In. (C) Temp Out. (C) CDD Annual KWh 18.60 22 28 134 0.00 esh-Air Replacement Q(Btu/hr) Total frm Temp In. (C) Temp Out. (C) CDD 2 (Btu/hr) Total frm Temp In. (F) Temp Out. (F) Q(kW) 28,040.00 2,400 72 83 soling Load Q(Btu/hr) Operating Hours 0.00 24.0 72 83 0.00 nual Cost for Heat Pump EER Temp In. (C) Temp Out. (F) 28,040.00 24.0 72 83 nual Cost for Heat Pump EER Temp In. (C) Temp Out. (C) CDD 134 18.60 22 134 0.00 24.0 72 83 nual Cost for Heat Pump EER Temp In. (C) Temp Out. (C) CDD 134 18.60 22<			-							
Q (Btu/hr) Total cfm H1 H2 Q (KW) Q (Btu/hr) Operating Hours 24.0 0.0138 0.0085 nnual Cost for Chiller EER Temp In. (C) Temp Out (C) CDD Annual kWh 28 134 0.00 28.0 24.0 Annual kWh 2 (Btu/hr) Total cfm Temp In. (F) Temp Out. (F) Q (KW) 29,040.00 24.0 72 83 0.00 coling Load Q (Btu/hr) Operating Hours 29,040.00 24.0 nnual Cost for Heat Pump EER Temp In. (C) Temp Out. (F) 28 coling Load Q (Btu/hr) Operating Hours 29,040.00 24.0 nnual Cost for Heat Pump EER Temp In. (C) Temp Out. (C) CDD Q (Btu/hr) Operating Hours 29,040.00 24.0 Annual Cost for Heat Pump EER						0.201112001				
2,400 0.0138 0.0085 0.00 tent Load - Dehumidication 0 0.00 24.0 anual Cost for Chiller 0.000 24.0 0.000 EER Temp In. (C) Temp Out (C) CDD Annual KWh 18.60 22 28 134 0.00 esh-Air Replacement 0.00 24.0 28 134 0.00 24.0 72 83 0.00 soling Load 0 0.00 72 83 0.00 ool 24.0 22 28 134 0.00 24.0 numal Cost for Heat Pump EER Temp In. (F) Temp Out. (F) Q (KW) 0.00 24.00 72 83 0.00 24.0 22 28 134 0.00 29.040.00 24.00 24.0 numal Cost for Heat Pump EER Temp In. (C) Temp Out. (C) CDD 29.040.00 24.0 21.0 numal Cost for Heat Pump EER Temp Out. (C) CDD EER Temp In. (C) Temp Out. (C) CDD 18.60 22			d - Dehumidicatio							
Attent Load - Dehumidication Q (Btu/hr) Operating Hours 0.00 24.0 Annual Cost for Chiller EER Temp In. (C) Temp Out (C) CDD Annual KWh 18.60 22 28 134 0.00 Presh-Air Replacement Q (Btu/hr) Oztal cfm Temp In. (F) Temp Out. (F) Q (kW) cooling Load Q (Btu/hr) Operating Hours Z4.0 Ox00 Z4.0 Total fm Temp Out. (F) Q (kW) ooling Load Q (Btu/hr) Operating Hours Z4.0 Total fm Temp Out. (F) Temp Out. (F) EER Temp In. (C) Temp Out. (C) CDD Annual KWh Q (Btu/hr) Operating Hours Z4.0 Ox00 Z4.0 Total Annual Cooling kWh: 0.00 Z4.0 Total Annual Cooling kWh: D.00 Total Annual Cooling kWh: 0.00 Total Annual Heating kWh's: 132,613.16							Total afm	H1	H2	Q
resh-Air Replacement Q (Btu/hr) Total cfm Temp In. (F) Temp Out. (F) Q (kW) 2,400 72 83 0.00 pooling Load Q (Btu/hr) Operating Hours 2,400 72 83 0.00 24.0 0 24.0 0 24.0 24.0 nnual Cost for Heat Pump EER Temp In. (C) Temp Out (C) CDD Annual kWh 18.60 22 28 134 0.00 24.0 24.0 Total Annual Cooling kWh: 0.00 0.00 24.0 Total Annual Cooling kWh: 0.00 Total Annual Cooling kWh: 0.00 132,613.16	Q (Btu/hr) ent Load - Del Q (Btu/hr)	Total cfm 2,400 humidication Operating Hours	H1			61,564.80 Latent Load - D Q (Btu/hr)	2,400 ehumidication Operating Hours	0.0138	0.0085	
Q (Btu/hr) Total cfm Temp In. (F) Temp Out. (F) Q (kW) 2,400 72 83 0.00 poling Load Q (Btu/hr) Operating Hours Z4.0 Total cfm Temp In. (F) Temp Out. (F) nual Cost for Heat Pump EER Temp In. (C) Temp Out (C) CDD Annual kWh O.00 Z4.0 Nual Cost for Heat Pump EER Temp In. (C) Temp Out (C) CDD Annual kWh 0.00 Z2 Z8 134 Out Total Annual Cooling kWh: 0.00 0.00 Total Annual Cooling kWh:s: 132,613.16 132,613.16 Total Annual Heating kWh's: 132,613.16	Q (Btu/hr) ent Load - Del Q (Btu/hr) 0.00 nual Cost for (EER	Total cfm 2,400 humidication Operating Hours 24.0 Chiller Temp In. (C)	H1 0.0138 Temp Out (C)	0.0085 CDD	0.00 Annual kWh	61,564.80 Latent Load - D Q (Btu/hr) 61,564.80 Annual Cost for EER	2,400 ehumidication Operating Hours 24.0 Teat Pump Temp In. (C)	Temp Out (C)	CDD	18 Annu
Q (Btu/hr) Total cfm Temp In. (F) Temp Out. (F) Q (kW) 2,400 72 83 0.00 poling Load Q (Btu/hr) Total cfm Temp In. (F) Temp Out. (F) Q (Btu/hr) 2,400 72 83 poling Load Q (Btu/hr) Operating Hours Q (Btu/hr) Operating Hours 0.00 24.0 Annual Cost for Heat Pump Q (Btu/hr) Q (Btu/hr) Q parting Hours EER Temp In. (C) Temp Out (C) CDD Annual kWh 0.00 18.60 22 28 134 0.00 Total Annual Cooling kWh: 0.00 Total Annual Cooling kWh's: 132,613.16	Q (Btu/hr) ent Load - Del Q (Btu/hr) 0.00 nual Cost for (EER	Total cfm 2,400 humidication Operating Hours 24.0 Chiller Temp In. (C)	H1 0.0138 Temp Out (C)	0.0085 CDD	0.00 Annual kWh	61,564.80 Latent Load - D Q (Btu/hr) 61,564.80 Annual Cost for EER 18.60	2,400 ehumidication Operating Hours 24.0 Heat Pump Temp In. (C) 22	Temp Out (C)	CDD	18 Annu
2,400 72 83 0.00 poling Load 29,040.00 2,400 72 83 Q (Btu/hr) Operating Hours 24.0 0 72 83 nnual Cost for Heat Pump EER Temp In. (C) Temp Out (C) CDD Annual kWh 0.00 18.60 22 28 134 0.00 24.0 Annual Cost for Heat Pump EER Temp In. (C) Temp Out (C) CDD Annual kWh 0.00 22 28 134 Total Annual Cooling kWh: 0.00 0.00 Total Annual Cooling kWh:s: 132,613.16 \$134.31013431 Total Annual Heating kWh's:	Q (Btu/hr) ent Load - Del Q (Btu/hr) 0.00 nual Cost for (EER	Total cfm 2,400 humidication Operating Hours 24.0 Chiller Temp In. (C)	H1 0.0138 Temp Out (C)	0.0085 CDD	0.00 Annual kWh	61,564.80 Latent Load - D Q (Btu/hr) 61,564.80 Annual Cost for EER 18.60	2,400 ehumidication Operating Hours 24.0 Heat Pump Temp In. (C) 22	Temp Out (C)	CDD	18 Annu
Cooling Load Q (Btu/hr) Operating Hours Q.00 Description Cooling Load Q.00 Q.00 Q.00 Q.00 Q.00 Q.00 Q.00 Q.00 Description Cooling Load Q.00 Q.00 Q.00 Q.00 Q.00 Q.00 Description CODD Description Description Cooling Load Q.00 Q.00 Q.00 Q.00 Q.00 Q.00 Q.00 Q.00 Description Descrinding in the secription <thdescrip< td=""><td>Q (Btu/hr) ent Load - Del Q (Btu/hr) 0.00 nual Cost for (EER 18.60</td><td>Total cfm 2,400 humidication Operating Hours 24.0 Chiller Temp In. (C) 22</td><td>H1 0.0138 Temp Out (C) 28</td><td>0.0085 CDD 134</td><td>0.00 Annual kWh 0.00</td><td>61,564.80 Latent Load - D Q (Btu/hr) 61,564.80 Annual Cost for EER 18.60 5.261948718 Fresh-Air Repla</td><td>2,400 ehumidication Operating Hours 24.0 Cheat Pump Temp In. (C) 22 kW of Heat Pump</td><td>Temp Out (C) 28</td><td>CDD 134</td><td>18 Annu 1,77</td></thdescrip<>	Q (Btu/hr) ent Load - Del Q (Btu/hr) 0.00 nual Cost for (EER 18.60	Total cfm 2,400 humidication Operating Hours 24.0 Chiller Temp In. (C) 22	H1 0.0138 Temp Out (C) 28	0.0085 CDD 134	0.00 Annual kWh 0.00	61,564.80 Latent Load - D Q (Btu/hr) 61,564.80 Annual Cost for EER 18.60 5.261948718 Fresh-Air Repla	2,400 ehumidication Operating Hours 24.0 Cheat Pump Temp In. (C) 22 kW of Heat Pump	Temp Out (C) 28	CDD 134	18 Annu 1,77
Q (Btu/hr) Operating Hours 0.00 24.0 nnual Cost for Heat Pump Annual Cost for Heat Pump EER Temp In. (C) Temp Out (C) CDD 18.60 22 28 134 Total Annual Cooling kWh: 0.00 Total Annual Heating kWh's: 132,613.16	Q (Btu/hr) ent Load - Del Q (Btu/hr) 0.00 nual Cost for (EER 18.60	Total cfm 2,400 humidication Operating Hours 24.0 Chiller Temp In. (C) 22	H1 0.0138 Temp Out (C) 28 Temp In. (F)	0.0085 CDD 134 Temp Out. (F)	0.00 Annual kWh 0.00 Q (kW)	61,564.80 Latent Load - D Q (Btu/hr) 61,564.80 Annual Cost for EER 18.60 5.261948718 Fresh-Air Repla Q (Btu/hr)	2,400 ehumidication Operating Hours 24.0 • Heat Pump Temp In. (C) 22 kW of Heat Pump cement Total cfm	Temp Out (C) 28 Temp In. (F)	CDD 134 Temp Out. (F)	18 Annu 1,77
0.00 24.0 nnual Cost for Heat Pump EER Temp In. (C) Temp Out (C) CDD 18.60 22 28 134 Total Annual Cooling kWh: 0.00 18.60 22 28 Total Annual Cooling kWh: 0.00 132,613.16 Total Annual Cooling kWh:s: 132,613.16	Q (Btu/hr) ent Load - Del Q (Btu/hr) 0.00 nual Cost for (EER 18.60	Total cfm 2,400 humidication Operating Hours 24.0 Chiller Temp In. (C) 22	H1 0.0138 Temp Out (C) 28 Temp In. (F)	0.0085 CDD 134 Temp Out. (F)	0.00 Annual kWh 0.00 Q (kW)	61,564.80 Latent Load - D Q (Btu/hr) 61,564.80 Annual Cost for EER 18.60 5.261948718 Fresh-Air Repla Q (Btu/hr)	2,400 ehumidication Operating Hours 24.0 • Heat Pump Temp In. (C) 22 kW of Heat Pump cement Total cfm	Temp Out (C) 28 Temp In. (F)	CDD 134 Temp Out. (F)	18 Annu 1,77
Innual Cost for Heat Pump Annual Cost for Heat Pump EER Temp In. (C) Temp Out (C) CDD 18.60 22 28 134 0.00 Total Annual Cooling kWh: 0.00 Total Annual Cooling kWh: 0.00 Total Annual Heating kWh's: 132,613.16 \$134.31013431 Total Annual Heating kWh's:	Q (Btu/hr) ent Load - Del Q (Btu/hr) 0.00 nual Cost for (EER 18.60 sh-Air Replac Q (Btu/hr)	Total cfm 2,400 humidication Operating Hours 24.0 Chiller Temp In. (C) 22 cement Total cfm 2,400	H1 0.0138 Temp Out (C) 28 Temp In. (F)	0.0085 CDD 134 Temp Out. (F)	0.00 Annual kWh 0.00 Q (kW)	61,564.80 Latent Load - D Q (Btu/hr) 61,564.80 Annual Cost for EER 18.60 5.261948718 Fresh-Air Repla Q (Btu/hr) 29,040.00 Cooling Load	2,400 ehumidication Operating Hours 24.0 Heat Pump Temp In. (C) 22 kW of Heat Pump cement Total cfm 2,400	Temp Out (C) 28 Temp In. (F)	CDD 134 Temp Out. (F)	18 Annu 1,77
EER Temp In. (C) Temp Out (C) CDD Annual kWh 18.60 22 28 134 0.00 Total Annual Cooling kWh: 0.00 Total Annual Heating kWh's: 132,613.16	Q (Btu/hr) ent Load - Dei Q (Btu/hr) 0.00 nual Cost for (EER 18.60 sh-Air Replac Q (Btu/hr) oling Load Q (Btu/hr)	Total cfm 2,400 humidication Operating Hours 24.0 Chiller Temp In. (C) 22 cement Total cfm 2,400 Operating Hours	H1 0.0138 Temp Out (C) 28 Temp In. (F)	0.0085 CDD 134 Temp Out. (F)	0.00 Annual kWh 0.00 Q (kW)	61,564.80 Latent Load - D Q (Btu/hr) 61,564.80 Annual Cost for EER 18.60 5.261948718 Fresh-Air Repla Q (Btu/hr) 29,040.00 Cooling Load Q (Btu/hr)	2,400 ehumidication Operating Hours 24.0 • Heat Pump Temp In. (C) 22 kW of Heat Pump cement Total cfm 2,400 Operating Hours	Temp Out (C) 28 Temp In. (F)	CDD 134 Temp Out. (F)	18 Annu 1,77
18.60 22 28 134 0.00 Total Annual Cooling kWh: 0.00 Total Annual Cooling kWh: 132,613.16 Total Annual Heating kWh's: 132,613.16 \$134.31013431 Total Annual Heating kWh's:	Q (Btu/hr) ent Load - Dei Q (Btu/hr) 0.00 nual Cost for (EER 18.60 sh-Air Replac Q (Btu/hr) oling Load Q (Btu/hr)	Total cfm 2,400 humidication Operating Hours 24.0 Chiller Temp In. (C) 22 cement Total cfm 2,400 Operating Hours	H1 0.0138 Temp Out (C) 28 Temp In. (F)	0.0085 CDD 134 Temp Out. (F)	0.00 Annual kWh 0.00 Q (kW)	61,564.80 Latent Load - D Q (Btu/hr) 61,564.80 Annual Cost for EER 18.60 5.261948718 Fresh-Air Repla Q (Btu/hr) 29,040.00 Cooling Load Q (Btu/hr)	2,400 ehumidication Operating Hours 24.0 • Heat Pump Temp In. (C) 22 kW of Heat Pump cement Total cfm 2,400 Operating Hours	Temp Out (C) 28 Temp In. (F)	CDD 134 Temp Out. (F)	18 Annu 1,77
Total Annual Cooling kWh: 0.00 Total Annual Cooling kWh: Total Annual Heating kWh's: 132,613.16 \$134.31013431 Total Annual Heating kWh's:	Q (Btu/hr) ent Load - Dei Q (Btu/hr) 0.00 nual Cost for 0 EER 18.60 sh-Air Replac Q (Btu/hr) 0.00	Total cfm 2,400 humidication Operating Hours 24.0 Chiller Temp In. (C) 22 cement Total cfm 2,400 Operating Hours 24.0	H1 0.0138 Temp Out (C) 28 Temp In. (F) 72	0.0085 CDD 134 Temp Out. (F) 83	0.00 Annual kWh 0.00 Q (kW)	61,564.80 Latent Load - D Q (Btu/hr) 61,564.80 Annual Cost for EER 18.60 5.261948718 Fresh-Air Repla Q (Btu/hr) 29,040.00 Cooling Load Q (Btu/hr) 29,040.00	2,400 ehumidication Operating Hours 24.0 Cheat Pump Temp In. (C) 22 kW of Heat Pump cement Total cfm 2,400 Operating Hours 24.0	Temp Out (C) 28 Temp In. (F) 72	CDD 134 Temp Out. (F) 83	Annu
Total Annual Heating kWh's: 132,613.16 \$134.31013431 Total Annual Heating kWh's:	Q (Btu/hr) ent Load - Dei Q (Btu/hr) 0.00 nual Cost for (EER 18.60 Sh-Air Replac Q (Btu/hr) 0.00 Oling Load Q (Btu/hr) 0.00 nual Cost for I EER	Total cfm 2,400 humidication Operating Hours 24.0 Chiller Temp In. (C) 22 cement Total cfm 2,400 Operating Hours 24.0 Heat Pump Temp In. (C)	H1 0.0138 Temp Out (C) 28 Temp In. (F) 72 Temp Out (C)	0.0085 CDD 134 Temp Out. (F) 83 CDD	0.00 Annual kWh 0.00 Q (kW) 0.00 Annual kWh	61,564.80 Latent Load - D Q (Btu/hr) 61,564.80 Annual Cost for EER 18.60 5.261948718 Fresh-Air Repla Q (Btu/hr) 29,040.00 Cooling Load Q (Btu/hr) 29,040.00 Annual Cost for EER	2,400 ehumidication Operating Hours 24.0 Heat Pump Temp In. (C) 22 kW of Heat Pump cement Total cfm 2,400 Operating Hours 24.0 Heat Pump Temp In. (C)	Temp Out (C) 28 Temp In. (F) 72 Temp Out (C)	CDD 134 Temp Out. (F) 83 CDD	18 Annu 1,77 Q (8.
Total Annual Heating kWh's: 132,613.16 \$134.31013431 Total Annual Heating kWh's:	Q (Btu/hr) ent Load - Dei Q (Btu/hr) 0.00 nual Cost for (EER 18.60 Sh-Air Replac Q (Btu/hr) 0.00 Oling Load Q (Btu/hr) 0.00 nual Cost for I EER	Total cfm 2,400 humidication Operating Hours 24.0 Chiller Temp In. (C) 22 cement Total cfm 2,400 Operating Hours 24.0 Heat Pump Temp In. (C)	H1 0.0138 Temp Out (C) 28 Temp In. (F) 72 Temp Out (C)	0.0085 CDD 134 Temp Out. (F) 83 CDD	0.00 Annual kWh 0.00 Q (kW) 0.00 Annual kWh	61,564.80 Latent Load - D Q (Btu/hr) 61,564.80 Annual Cost for EER 18.60 5.261948718 Fresh-Air Repla Q (Btu/hr) 29,040.00 Cooling Load Q (Btu/hr) 29,040.00 Annual Cost for EER	2,400 ehumidication Operating Hours 24.0 Heat Pump Temp In. (C) 22 kW of Heat Pump cement Total cfm 2,400 Operating Hours 24.0 Heat Pump Temp In. (C)	Temp Out (C) 28 Temp In. (F) 72 Temp Out (C)	CDD 134 Temp Out. (F) 83 CDD	18 Annu 1,77 Q (8
Total Annual Heating kWh's: 132,613.16 \$134.31013431 Total Annual Heating kWh's:	Q (Btu/hr) ent Load - Dei Q (Btu/hr) 0.00 nual Cost for (EER 18.60 Sh-Air Replac Q (Btu/hr) 0.00 Oling Load Q (Btu/hr) 0.00 nual Cost for I EER	Total cfm 2,400 humidication Operating Hours 24.0 Chiller Temp In. (C) 22 cement Total cfm 2,400 Operating Hours 24.0 Heat Pump Temp In. (C)	H1 0.0138 Temp Out (C) 28 Temp In. (F) 72 Temp Out (C)	0.0085 CDD 134 Temp Out. (F) 83 CDD	0.00 Annual kWh 0.00 Q (kW) 0.00 Annual kWh	61,564.80 Latent Load - D Q (Btu/hr) 61,564.80 Annual Cost for EER 18.60 5.261948718 Fresh-Air Repla Q (Btu/hr) 29,040.00 Cooling Load Q (Btu/hr) 29,040.00 Annual Cost for EER	2,400 ehumidication Operating Hours 24.0 Heat Pump Temp In. (C) 22 kW of Heat Pump cement Total cfm 2,400 Operating Hours 24.0 Heat Pump Temp In. (C)	Temp Out (C) 28 Temp In. (F) 72 Temp Out (C)	CDD 134 Temp Out. (F) 83 CDD	Annu 1,77 Q (8
	Q (Btu/hr) ent Load - Dei Q (Btu/hr) 0.00 nual Cost for (EER 18.60 Sh-Air Replac Q (Btu/hr) 0.00 Oling Load Q (Btu/hr) 0.00 nual Cost for I EER	Total cfm 2,400 humidication Operating Hours 24.0 Chiller Temp In. (C) 22 cement Total cfm 2,400 Operating Hours 24.0 Heat Pump Temp In. (C)	H1 0.0138 Temp Out (C) 28 Temp In. (F) 72 Temp Out (C) 28	0.0085 CDD 134 Temp Out. (F) 83 CDD 134	0.00 Annual kWh 0.00 Q (kW) 0.00 Annual kWh 0.00	61,564.80 Latent Load - D Q (Btu/hr) 61,564.80 Annual Cost for EER 18.60 5.261948718 Fresh-Air Repla Q (Btu/hr) 29,040.00 Cooling Load Q (Btu/hr) 29,040.00 Annual Cost for EER	2,400 ehumidication Operating Hours 24.0 Heat Pump Temp In. (C) 22 kW of Heat Pump cement Total cfm 2,400 Operating Hours 24.0 Heat Pump Temp In. (C)	Temp Out (C) 28 Temp In. (F) 72 Temp Out (C) 28	CDD 134 Temp Out. (F) 83 CDD 134	18 Annu 1,7 Q (8 Annu 83
Heat Coil Effectiveness	Q (Btu/hr) ent Load - Dei Q (Btu/hr) 0.00 nual Cost for (EER 18.60 Sh-Air Replac Q (Btu/hr) 0.00 Oling Load Q (Btu/hr) 0.00 nual Cost for I EER	Total cfm 2,400 humidication Operating Hours 24.0 Chiller Temp In. (C) 22 cement Total cfm 2,400 Operating Hours 24.0 Heat Pump Temp In. (C)	H1 0.0138 Temp Out (C) 28 Temp In. (F) 72 Temp Out (C) 28 Total Annua	0.0085 CDD 134 Temp Out. (F) 83 CDD 134 I Cooling kWh:	0.00 Annual kWh 0.00 Q (kW) 0.00 Annual kWh 0.00	61,564.80 Latent Load - D Q (Btu/hr) 61,564.80 Annual Cost for EER 18.60 5.261948718 Fresh-Air Repla Q (Btu/hr) 29,040.00 Cooling Load Q (Btu/hr) 29,040.00 Annual Cost for EER	2,400 ehumidication Operating Hours 24.0 Heat Pump Temp In. (C) 22 kW of Heat Pump cement Total cfm 2,400 Operating Hours 24.0 Heat Pump Temp In. (C)	Temp Out (C) 28 Temp In. (F) 72 Temp Out (C) 28 Total Annua	CDD 134 Temp Out. (F) 83 CDD 134 al Cooling kWh:	11 Annu 1,7 Q 8 Annu 83 2,6
Heat Coll Effectiveness'	Q (Btu/hr) ent Load - Dei Q (Btu/hr) 0.00 nual Cost for (EER 18.60 Sh-Air Replac Q (Btu/hr) 0.00 Oling Load Q (Btu/hr) 0.00 nual Cost for I EER	Total cfm 2,400 humidication Operating Hours 24.0 Chiller Temp In. (C) 22 cement Total cfm 2,400 Operating Hours 24.0 Heat Pump Temp In. (C)	H1 0.0138 Temp Out (C) 28 Temp In. (F) 72 Temp Out (C) 28 Total Annua	0.0085 CDD 134 Temp Out. (F) 83 CDD 134 I Cooling kWh:	0.00 Annual kWh 0.00 Q (kW) 0.00 Annual kWh 0.00	61,564.80 Latent Load - D Q (Btu/hr) 61,564.80 Annual Cost for EER 18.60 5.261948718 Fresh-Air Repla Q (Btu/hr) 29,040.00 Cooling Load Q (Btu/hr) 29,040.00 Annual Cost for EER 18.60	2,400 ehumidication Operating Hours 24.0 • Heat Pump Temp In. (C) 22 kW of Heat Pump Coment Total cfm 2,400 Operating Hours 24.0 • Heat Pump Temp In. (C) 22	Temp Out (C) 28 Temp In. (F) 72 Temp Out (C) 28 Total Annua	CDD 134 Temp Out. (F) 83 CDD 134 al Cooling kWh:	11 Annu 1,7 Q 8 Annu 83 2,6
	Q (Btu/hr) ent Load - Dei Q (Btu/hr) 0.00 nual Cost for (EER 18.60 Sh-Air Replac Q (Btu/hr) 0.00 Oling Load Q (Btu/hr) 0.00 nual Cost for I EER	Total cfm 2,400 humidication Operating Hours 24.0 Chiller Temp In. (C) 22 cement Total cfm 2,400 Operating Hours 24.0 Heat Pump Temp In. (C)	H1 0.0138 Temp Out (C) 28 Temp In. (F) 72 Temp Out (C) 28 Total Annua	0.0085 CDD 134 Temp Out. (F) 83 CDD 134 I Cooling kWh:	0.00 Annual kWh 0.00 Q (kW) 0.00 Annual kWh 0.00	61,564.80 Latent Load - D Q (Btu/hr) 61,564.80 Annual Cost for EER 18.60 5.261948718 Fresh-Air Repla Q (Btu/hr) 29,040.00 Cooling Load Q (Btu/hr) 29,040.00 Annual Cost for EER 18.60	2,400 ehumidication Operating Hours 24.0 • Heat Pump Temp In. (C) 22 kW of Heat Pump Coment Total cfm 2,400 Operating Hours 24.0 • Heat Pump Temp In. (C) 22	Temp Out (C) 28 Temp In. (F) 72 Temp Out (C) 28 Total Annua Total Annual	CDD 134 Temp Out. (F) 83 CDD 134 al Cooling kWh: Heating kWh's:	11 Annu 1,7 Q 8 Annu 83 2,6 55,2
Total Annual Cooling kWh: Total Annual Heating kWh's:	Q (Btu/hr) ent Load - Dei Q (Btu/hr) 0.00 nual Cost for (EER 18.60 Sh-Air Replac Q (Btu/hr) 0.00 Oling Load Q (Btu/hr) 0.00 nual Cost for I EER	Total cfm 2,400 humidication Operating Hours 24.0 Chiller Temp In. (C) 22 cement Total cfm 2,400 Operating Hours 24.0 Heat Pump Temp In. (C)	H1 0.0138 Temp Out (C) 28 Temp In. (F) 72 Temp Out (C) 28 Total Annua	0.0085 CDD 134 Temp Out. (F) 83 CDD 134 I Cooling kWh:	0.00 Annual kWh 0.00 Q (kW) 0.00 Annual kWh 0.00	61,564.80 Latent Load - D Q (Btu/hr) 61,564.80 Annual Cost for EER 18.60 5.261948718 Fresh-Air Repla Q (Btu/hr) 29,040.00 Cooling Load Q (Btu/hr) 29,040.00 Annual Cost for EER 18.60	2,400 ehumidication Operating Hours 24.0 • Heat Pump Temp In. (C) 22 kW of Heat Pump Coment Total cfm 2,400 Operating Hours 24.0 • Heat Pump Temp In. (C) 22	Temp Out (C) 28 Temp In. (F) 72 Temp Out (C) 28 Total Annual Total Annual Heat Coil	CDD 134 Temp Out. (F) 83 CDD 134 al Cooling kWh: set leffectiveness:	11 Annu 1,7 Q 8 8 8 8 9 5,5,2

Ventilation Air AH-2

Hrs per D 24.0	Proposed Energy Use - Replace Unit with VRV HP & ERV				BASE CASE Energy Use - Heating Only					
	200	200	New OA Flow Rate:		Hrs per Day 0.0		3,500	2 Flow (per dwg's) :	AH-2	
		ting Canacity	ement - Sensible Hea	Fresh-Air Replac			ting Load	ement - Sensible Hea	resh-Air Penlace	
Q (kW)	Temp Out. (F)	Temp In. (F)	Total cfm	Q (Btu/hr)	Q (kW)	Temp Out. (F)	Temp In. (F)	Total cfm	Q (Btu/hr)	
4.11	1	66	200	14,040.00	72.01	1	66	3,500	245,700.00	
	1	00	200	14,040.00	72.01	I	00	5,500	243,700.00	
			Load	Sensible Heating				Load	Sensible Heating	
			Operating Hours	Q (Btu/hr)				Operating Hours	Q (Btu/hr)	
			24.0	14,040.00				0.0	245,700.00	
			lectric	Annual Cost for E				lectric	Annual Cost for E	
Annual kV	Temp Out (F)	Temp In. (F)	HDD (66F)	Efficiency	Annual kWh's	Temp Out (F)	Temp In. (F)	HDD (66F)	Efficiency	
11,051.1	1	66	7,274	100.0%	0.00	1	66	7,274	100.0%	
		00	7,217	100.070	0.00	•	00	1,214	100.070	
				Annual Cost for I					nnual Cost for H	
Annual k	HDD (≤18.9C)	Temp Out (C)	Temp In. (C)	EER	Annual kWh	HDD (≤18.9C)	Temp Out (C)	Temp In. (C)	EER	
4,604.0	4,041	19	-17.2	8.19	0.00	4,041	19	-17.2	8.19	
			kW of HP	0.771428571						
		Dehumidication	ement - Latent Load -	Fresh-Air Replac			Dehumidication	ement - Latent Load	resh-Air Replace	
Q (kW	H2	H1	Total cfm	Q (Btu/hr)	Q (kW)	H2	H1	Total cfm	Q (Btu/hr)	
15.40	0.0085	0.0138	2,048	52,535.30	0.00	0.0085	0.0138	3,500		
			24.0	52,535.30 Annual Cost for H				0.0	0.00	
Annual k	CDD	Temp Out (C)	Temp In. (C)	EER	Annual kWh	CDD	Temp Out (C)	Temp In. (C)	EER	
1,516.1	134	28	22	18.60	0.00	134	28	22	18.60	
			kW of Heat Pump	4.490196239						
			• •							
			ment	Fresh-Air Replac				ement	resh-Air Replace	
Q (kW	Temp Out. (F)	Temp In. (F)	Total cfm	Q (Btu/hr)	Q (kW)	Temp Out. (F)	Temp In. (F)	Total cfm	Q (Btu/hr)	
7.26	83	72	2,048	24,780.80	0.00	83	72	3,500		
			Operating Harris	Cooling Load				Operating Harris	ooling Load	
			Operating Hours	Q (Btu/hr)				Operating Hours	Q (Btu/hr)	
			24.U	24,780.80				0.0	0.00	
			leat Pump	Annual Cost for H				leat Pump	nnual Cost for H	
Annual k	CDD	Temp Out (C)	Temp In. (C)	EER	Annual kWh	CDD	Temp Out (C)	Temp In. (C)	EER	
715.18	134	28	22	18.60	0.00	134	28	22	18.60	
			Temp In. (C)	EER				Temp In. (C)		

BEFORE Annual Heating Cost - HUH's, CUH's Misc BB

Note: Yellow fields are editable...do not touch any blue fields.

Heater Size (Btu/hr)	204,911	Note: This represents the heat loss or heat requirements of the building. calculation tool will be inaccurate if the system was initially oversized.	This
Heater Size (kW)	60.00		
		•	
Indoor Design Temp (°F)	72	72°F is the Standard ASHRAE Design Condition	
Outdoor Design Temp (°F)	1	1°F is the Standard ASHRAE Design Condition for Halifax	
Heating Degree Days	5762	Must be degree F HDD's	
Operating Hours per Day	18		

Electric

Energy Content (Btu per kW-hr)	3,412	
Heat Efficiency (%)	100%	Electric Efficiency is always 100%
Annual Fuel Use (kWh)	87,722.88	
Heat Set-Back	0.00	
REVISED Annual Fuel Use (kWh)	87,722.88	

AFTER Annual Heating Cost - HUH's, CUH's Misc BB

Note: Yellow fields are editable...do not touch any blue fields.

Heater Size (Btu/hr)	204,911	Note: This represents the heat loss or heat requirements of the building. Thi calculation tool will be inaccurate if the system was initially oversized.
Heater Size (kW)	60.00]
	70	1
Indoor Design Temp (°F)	72	72°F is the Standard ASHRAE Design Condition
Outdoor Design Temp (°F)	1	1°F is the Standard ASHRAE Design Condition for Halifax
Heating Degree Days	5762	Must be degree F HDD's
Operating Hours per Day	18	

Electric

Energy Content (Btu per kW-hr)	3,412	
Heat Efficiency (%)	100%	Electric Efficiency is always 100%
Annual Fuel Use (kWh)	87,722.88	
Heat Set-Back	4,443.39	
REVISED Annual Fuel Use (kWh)	83,279.49	

BEFORE Annual Heating Cost - CUH- 6

Note: Yellow fields are editable...do not touch any blue fields.

Heater Size (Btu/hr)		<u>Note:</u> This represents the heat loss or heat requirements of the building. This calculation tool will be inaccurate if the system was
Heater Size (kW)	14.00	Just CUH-4, CUH-5, CUH-6
Indoor Design Temp (°F)	72	72°F is the Standard ASHRAE Design Condition
Outdoor Design Temp (°F)	1	1°F is the Standard ASHRAE Design Condition for Halifax
Heating Degree Days	5762	Must be degree F HDD's
Operating Hours per Day	18]

Electric

Energy Content (Btu per kW-hr)	3,412
Heat Efficiency (%)	100%
Annual Fuel Use (kWh)	20,470.10
Heat Set-Back	0.00
REVISED Annual Fuel Use (kWh)	20,470.10

AFTER Annual Heating Cost - CUH-6

Note: Yellow fields are editable...do not touch any blue fields.

Heater Size (Btu/hr)	47,813	Note: This represents the heat loss or heat requirements of the building. This calculation tool will be inaccurate if the system was
Heater Size (kW)	14.00	Just CUH-4, CUH-5, CUH-6
Indoor Design Temp (°F)	72	72°F is the Standard ASHRAE Design Condition
Outdoor Design Temp (°F)	1	1°F is the Standard ASHRAE Design Condition for Halifax
Heating Degree Days	5762	Must be degree F HDD's
Operating Hours per Day	18	

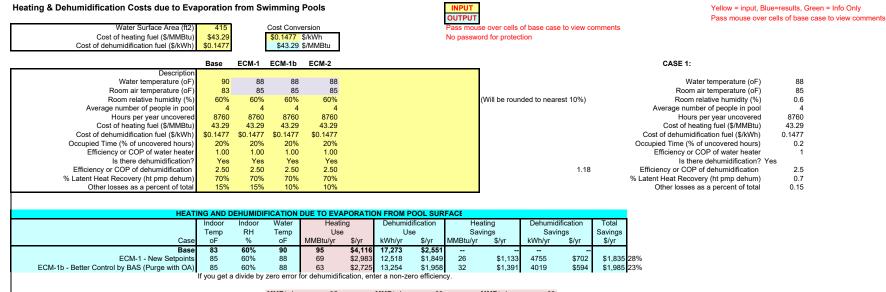
Electric

Energy Content (Btu per kW-hr)	3,412
Heat Efficiency (%)	240%
Annual Fuel Use (kWh)	8,529.21
Heat Set-Back	0.00
REVISED Annual Fuel Use (kWh)	8,529.21

Heat Set-Back - AFTER

BB Heaters, CUH's and HUH's in Common Areas

Building Heat Loss Reduction by Lowering Space Temperature


Degree Days below 16°C (DDh)	3200.89	
No of Months with Monthly Mean Temperature below 15° C	8	
No. of Days in Heating Season	243.2	days
Fuel Type	Electric	
Recorded Annual Fuel Consumption	87,723	kWh
% of Annual Consumption for HVAC	100%	
Annual Fuel Consumption for HVAC	87,723	kWh
Annual Fuel Consumption per DDh	27	kWh per DDh
Original Space Temperature (T1)	22	°C
Reduced Space Temperature (T2)	20	°C
Hour per Day at Reduced Temperatures	8	hrs
Reduction in Heating Degree Days	162.1333333	DDh
Annual kWh Savings	4,443.39	kWh

Mini-Split HP

Current Energy Use

MS-1 - Lounge Mini-Split

Q (Btu/hr)	Operating Hours			Peak kW	
15,000.00	24.00		[1.52]
nnual Cost					
IEER	Temp In. (C)	Temp Out (C)	CDD (Above 16C)	Annual kWh	Set-Back Annual kWh
18.60	20	28	400	967.74	0.00
leating Load - Hea					Revised Annual kWh
Q (Btu/hr)	Operating Hours				967.74
18,000.00	18.00				
Innual Cost					
nnual Cost EER	Temp Out. (C)	Temp In. (C)	HDD (Below 16C)	Annual kWh	Set-Back Annual kWh
	Temp Out. (C) -17.2	Temp In. (C) 21	HDD (Below 16C) 3,201	Annual kWh 2,740.74	Set-Back Annual kWh 0.00
EER	• • • •	• • • •	• •		0.00
EER	• • • •	• • • •	• •		0.00 Revised Annual kWh
EER	• • • •	• • • •	• •		Set-Back Annual kWh 0.00 Revised Annual kWh 2,740.74
EER	• • • •	• • • •	• •		0.00 Revised Annual kWh

MMBtu/	yr 95	MMBtu/yr	69	MMBtu/yr	63
eGJ	100	eGJ	73	eGJ	66
kWh	27867	kWh	20195	kWh	18450
\$	\$4,115.90	\$	\$2,982.83	\$	\$2,725.06

VRV Cooling IDU's

NEW Current Energy Use for ECM-4 (CU

Q (Btu/hr)	Operating Hours			Peak kW	
40,084.00	24.00		Г	2.17	
nual Cost			_		
·	Temp In. (C)	Temp Out (C)	CDD (Above 16C)	Annual kWh	Set-Back Annual kWh

Revised Annual kWh 3,466.72

Portable Dehum

Portable Dehum Unit

Motor					Single-Phase		
% EF	PF	Volts	Amps	hp	kW	Run Hours	kWh
100%	0.87	115	5.10	0.684	0.510	1,500	1,026

QTY.:	3
Total kWh:	3,077.95
Total Peak kW:	1.53

Elevator

Qty.2 - 31.3-hp Motors				3-Phase			
% EF	PF	Volts	Amps	hp	kW	Run Hours	kWh
90%	0.85	575	31.00	31.623	26.212	1,460	46,169

NOTE: Assume 4-hrs per day total run time (not per motor)